Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2795-2803.doi: 10.3864/j.issn.0578-1752.2020.14.004

• SPECIAL FOCUS: SORGHUM BREEDING AND CULTIVATION • Previous Articles     Next Articles

Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR

NIU Hao1,2(),PING JunAi1,2(),WANG YuBin1,2,ZHANG FuYao1,2,LÜ Xin1,2,LI HuiMing1,2,CHU JianQiang1,2   

  1. 1 Sorghum Institute of Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences)/Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Jinzhong 030600, Shanxi
    2 Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031
  • Received:2019-06-06 Accepted:2019-08-08 Online:2020-07-16 Published:2020-08-10
  • Contact: JunAi PING E-mail:nkyglsnh@126.com;pingja1029@163.com

Abstract:

【Objective】 The aim of this study is to use molecular marker to construct a breeding system to improve the traditional breeding method,thereby reducing breeding costs and improving breeding efficiency. At the same time, it lays a theoretical foundation for the formation of a new breeding system. 【Method】 The F2 population was constructed by crossing the photosensitive(non-heading) forage sorghum variety Jinguang 1R as female and the photo insensitive(heading) sorghum variety BMRC-3-2 as male. According to heading and non-heading phenotypes, F2 population was divided into two groups. Thirty plants were selected from each group and DNA was extracted from leaves, SSR and BSA were used to map photosensitive genes in F2 population of Jinguang 1R/BMRC-3-2 and screen for specific SSR primers. The specific primers were used to identify the photosensitivity trait in F1 generation(F1 Hybrids breeded from high generation stable restorer line with Jinguang 1R as parent and matched with other male sterile lines), and the final target primers were determined by comparing with the phenotype in the field, so as to construct a new photosensitive breeding system for forage sorghum. 【Result】 After SNP index analysis, the region of about 250 Kb before and after the highest point of 99% threshold line was selected as the candidate region for trait correlation. The total length of the region was 500 kb, with 400 SNP loci, and six of them were non-synonymous mutations or stop gain or stop loss SNP loci. Finally, two candidate genes were identified to be related to photosensitivity, which were located on chromosome 7. A pair of specific primers 70.2-3 was developed by SSR. The primers can distinguish between heading and non-heading sorghum plants to a great extent. The results showed that according to the "single peak" at 251bp, the accuracy of primers 70.2-3 in the identification and selection of 50 non-photosensitive F1 hybrids reached 100%, and all the materials showed a peak value near 251bp. Based on the "double peaks" in the vicinity of 214 bp and 251 bp, the accuracy rate of the primer for the identification and selection of the other 50 photosensitive F1 hybrid species reached 90%. Three materials, No. F1-69, F1-70 and F1-71, showed "double peaks" near 214 bp and 262 bp. Material F1-81 has a "single peak" at 251bp, while material No. 86 has a "double peak" near 251 bp and 232 bp.【Conclusion】 In this study, we revealed that the candidate genes controlling heading date of sorghum were LOC8068537 and LOC8068548, which were between 810000 and 1310000 bp on chromosome 7 of sorghum. The acquisition of specific primers 70.2-3 improved the traditional breeding methods. The primer validation in laboratory could replace the field crossing observation, saving the breeding cost and improving the breeding efficiency.

Key words: forage sorghum, photosensitive type, molecular markers

Table1

Genetic model of photosensitive traits in F2 generation"

性状Traits 实际值Actual value 理论值Theoretical value 分离比Separation ratio χ2
不抽穗Photosensitive 251 236 9﹕7 1.1
抽穗Photo-insensitive 169 184

Fig. 1

Distribution of SNP index and△(SNP index) on chromosomes in offspring mixed pools"

Fig. 2

PCR detection of F1 generation samples"

Fig. 3

Capillary electrophoresis of primer 70.2-3 pairs of parents and F1 plants Sample1 and Sample2 are photo-insensitive F1 hybrids, Sample3 and Sample4 are photosensitive F1 hybrids, Sample5 is the photosensitive parent Jinguang1R, Sample6 is the photo-insensitive parent BMRC-3-2"

Fig. 4

Comparison of old and new breeding systems"

[1] 平俊爱, 谢国强, 张福耀, 何余湧, 吴志勇, 王荣民, 吕鑫, 杜志宏, 李慧明, 牛皓, 王玉斌. 晋牧1号在南方红壤区的产草量: 营养价值及饲养效果研究. 安徽农业科学, 2018,46(35):94-96.
PING J A, XIE G Q, ZHANG F Y, HE Y Y, WU Z Y, WANG R M, LÜ X, DU Z H, LI H M, NIU H, WANG Y B. Breeding and characteristic of Sorghum biclolr × S. sudanense ‘Jinmu1’. Journal of Anhui Agricultural Sciences, 2018,46(35):94-96. (in Chinese)
[2] 平俊爱, 张福耀, 牛皓, 杨慧勇, 吕鑫, 杜志宏, 李慧明, 王玉斌. 基于SSR标记的饲草高粱种质资源遗传多样性分析. 分子植物育种, 2018,16(14):4663-4670.
PING J A, ZHANG F Y, NIU H, YANG H Y, LÜ X, DU Z H, LI H M, WANG Y B. Genetic diversity analysis of germplasm resources of forage sorghum based on SSR marker. Molecular Plant Breeding, 2018,16(14):4663-4670. (in Chinese)
[3] BHOSALE S U, BENJAMIN S, RATTUNDE H F W, WELTZIEN E, HAUSSMANN B I, HAUSSMANN C T, RAMU P, CUEVAS H E, PATERSON A H, MELCHINGER A E, PARZIES H K. Association analysis of photoperiodic flowering time genes in west and central African sorghum [ Sorghum bicolor(L.) Moench]. BMC Plant Biology, 2012,12:32-41.
pmid: 22394582
[4] CASTO A L, MATTISON A J, OLSON S N, THAKRAN M, ROONEY W L, MULLET J E. Maturity2, a novel regulatorof flowering time in Sorghum bicolor, increases expression of SbPRR37 and SbCO in long days delaying flowering. PLoS ONE, 2019,14(4):e0212154.
doi: 10.1371/journal.pone.0212154 pmid: 30969968
[5] SUKUMARAN S, LI X, LI X R, ZHU C S, BAI G H, PERUMAL R, TUINSTRA M R, PRASAD P V V, MITCHELL S E, TESSO T T, YU J. QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers. Crop Science, 2016,56(4):1429-1442.
[6] TUINSTRA M R, GROTE E M, GOLDSBROUGH P B, EJETA G. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor(L.) Moench. Molecular Breeding, 1997,3(6):439-448.
[7] SPINDEL J E, DAHLBERG J, COLGAN M, HOLLINGSWORTH J, SIEVERT J, STAGGENBORG S H, HUTMACHER R, JANSSON C, VOGEL J P. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. BMC Genomics, 2018,19:679-696.
pmid: 30223789
[8] WANG Y H, UPADHYAYA H D, BURRELL A M, SAHRAEIAN S M, KLEIN R R, KLEIN P E. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant Sorghum bicolor. G3Genesgenetics, 2013,3(5):783-793.
[9] HARPER M T, OH J, GIALLONGO F, LOPES J C, ROTH G W, HRISTOV A N. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations. Journal of Dairy Science, 2017,100(7):5250-5265.
doi: 10.3168/jds.2017-12552 pmid: 28527803
[10] MULLET J E, ROONEY W L, KLEIN P E, BRYAN D M, BRYAN R M, BRADY J A. Discovery and utilization of sorghum genes(Ma5/Ma6). 13/744405[P] 2013-09-12.
[11] MORGAN P W, FINLAYSON S A, LEE I J, CHILDS K L, HE C J, CREELMAN R A, DREW M C, MULLET J E. Regulation of circadianly rhythmic ethylene production by phytochrome b in sorghum. Biology and Biotechnology of the Plant Hormone Ethylene, 1997(1):105-111.
[12] QUINBY J R, KARPER R E. The inheritance of three genes that influence time of floral initiation and maturity date in Milo1. Journal of the American Society of Agronomy, 1945(11):916-936.
[13] QUINBY J R. Fourth maturity gene locus in sorghum. Crop Science, 1965(6):516-518.
[14] QUINBY J R. The maturity genes of sorghum. Advances in Agronomy, 1967(19):267-305.
[15] MAJOR D J, ROOD S B, MILLER F R. Temperature and photoperiod effects mediated by the sorghum maturity genes. Crop Science, 1990,30(2):305-310.
[16] CHILDS K L, LU J L, MULLET J E, MORGAN P W. Genetic regulation of development in Sorghum bicolor: X. Greatly attenuated photoperiod sensitivity in a phytochrome-deficient sorghum possessing a biological clock but lacking a red light-high irradiance response. Plant Physiology, 1995,108(1):345-351.
pmid: 12228479
[17] ROONEY W L, JÜRG B, BEAN B, MULLET J E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioprod Bioref, 2007,1(2):147-157.
[18] ROONEY W L, AYDIN S. Genetic control of a photoperiod-sensitive response inSorghum bicolor(L.) Moench. Crop Science, 1999,39(2):397-400.
[19] MORGAN P W, FINLAYSON S A, CHILDS K L, MULLET J E, ROONEY W L. Opportunities to improve adaptability and yield in grasses. Crop Science, 2002,42(6):1791-1799.
doi: 10.2135/cropsci2002.1791
[20] MURPHY R L, KLEIN R R, MORISHIGE D T, BRADY J A, ROONEY W L, MILLER F R, DUGAS D V, KLEIN P E, MULLET J E. Coincident light and clock regulation of pseudo response regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proceedings of the National Academy of Sciences of the USA, 2011,108(39):16469-16474.
doi: 10.1073/pnas.1106212108 pmid: 21930910
[21] YANG S S, WEERS B D, MORISHIGE D T, MULLET J E. CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biology, 2014,14(1):148-162.
[22] YANG S S, MURPHY R L, MORISHIGE D T, KLEIN P E, ROONEY W L, MULLET J E. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE, 2014,9(8):e105352.
doi: 10.1371/journal.pone.0105352 pmid: 25122453
[23] WANG Y, TAN L B, FU Y C, ZHU Z F, LIU F X, SUN C, CAI H W. Molecular evolution of the sorghum maturity gene Ma3. PLoS ONE, 2015,10(5):e0124435.
pmid: 25961888
[24] WOLABU T W, TADEGE M. Photoperiod response and floral transition in sorghum. Plant Signaling & Behavior, 2016,11(12):e1261232.
doi: 10.1080/15592324.2016.1261232 pmid: 27854155
[25] WOLABU T W, ZHANG F, NIU L F, KALVE S, MATHUR P B, MUSZYNSKI M G, TADEGE M. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytologist, 2016,210(3):946-959.
pmid: 26765652
[26] MULLET J E, ROONEY W L. Method for production of sorghum hybrids with selected flowering times. 13/886130[P]. 2016-08-30.
[27] CHILDS K L, MILLER F R, CORDONNIER PRATT M M, PRATT L H, MORGAN P W, MULLET J E. The sorghum photoperiod sensitivity gene, Ma3 encodes a phytochrome B. Plant Physiology, 1997,113(2):611-619.
doi: 10.1104/pp.113.2.611
[28] CHILDS K L, CORDONNIER PRATT M M, PRATT L H, MORGAN P W. Genetic regulation of development in Sorghum bicolor: VII. Ma3 R flowering mutant lacks a phytochrome that predominates in green tissue . Plant Physiology, 1992,99(2):765-770.
pmid: 16668953
[29] CHILDS K L, PRATT L H, MORGAN P W. Genetic regulation of development in Sorghum bicolor: VI. The Ma3R allele results in abnormal phytochrome physiology. Plant Physiology, 1991,97(2):714-719.
doi: 10.1104/pp.97.2.714 pmid: 16668457
[30] HART G E, SCHERTZ K F, PENG Y, SYED N H. Genetic mapping ofSorghum bicolor(L.) moench QTLs that control variation in tillering and other morphological characters. Theoretical and Applied Genetics, 2001,103(8):1232-1242.
[31] CHANTEREAU J, TROUCHE G, RAMI J F, DEU M, BARRO C, GRIVET L. RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica, 2001,120(2):183-194.
doi: 10.1023/A:1017513608309
[32] 牛皓, 平俊爱, 张福耀, 吕鑫, 杜志宏, 李慧明, 王玉斌. 基于SSR的高粱光敏特性分析. 安徽农业科学, 2018,46(35):103-105.
NIU H, PING J A, ZHANG F Y, LÜ X, DU Z H, LI H M, WANG Y B. Analysis on the photosensitivity of sorghum based on SSR. Journal of Anhui Agricultural Sciences, 2018,46(35):103-105. (in Chinese)
[1] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[2] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[3] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[4] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[5] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[6] GAO Rui, LI ChunLin, TONG XiaoLing, CAO MingYa, SHI MeiNing, XU AnYing, LU Cheng, DAI FangYin. Insight into Genetic Basis of Bombyx mori Resistant Strains with Resistance to BmNPV by Molecular Linkage Analysis [J]. Scientia Agricultura Sinica, 2017, 50(1): 195-204.
[7] LI Chen-xu, LIU Zhi-tao, ZHUANG Li-fang, QI Zeng-jun. Development and Application of Specific Molecular Markers of Thinopyrum bessarabicum Löve Based on RNA-seq [J]. Scientia Agricultura Sinica, 2015, 48(6): 1052-1062.
[8] ZHANG Xiao, ZHANG Bo-qiao, JIANG Wei, Lü Guo-feng, ZHANG Xiao-xiang, LI Man, GAO De-rong. Molecular Detection for Quality Traits-Related Genes in Yangmai Series Wheat Cultivars [J]. Scientia Agricultura Sinica, 2015, 48(19): 3779-3793.
[9] ZHENG Hai-yan,SU Jian-guang,DAI Zhi-gang,LI Yan,CHEN Ji-quan,GONG You-cai
. Establishment of Molecular Identity for Kenaf Germplasm Using ISSR and RAPD Markers
[J]. Scientia Agricultura Sinica, 2010, 43(17): 3499-3510 .
[10] YIN Dong-mei,WANG Yun,SHANG Ming-zhao,CUI Dang-qun
.

Genetic Diversity Analysis of Peanut Genotypes Based on Molecular Markers

[J]. Scientia Agricultura Sinica, 2010, 43(11): 2220-2228 .
[11] . Marker-assisted Selection and Application for Rice Blast Resistance Gene pib [J]. Scientia Agricultura Sinica, 2008, 41(1): 9-14 .
[12] . QTL Analysis of Oil Content and Hull Content in Brassica napus L. [J]. Scientia Agricultura Sinica, 2007, 40(4): 677-684 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!