Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4251-4261.doi: 10.3864/j.issn.0578-1752.2019.23.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Characteristics of Grain Filling and Dehydration in Wheat

ZHU DongMei,WANG Hui,LIU DaTong,GAO DeRong,Lü GuoFeng,WANG JunChan,GAO ZhiFu,LU ChengBin()   

  1. Lixiahe Institute of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Breeding in the Middle and Lower Yangtze River, Ministry of Agriculture, Yangzhou 225007, Jiangsu
  • Received:2019-08-29 Accepted:2019-10-08 Online:2019-12-01 Published:2019-12-01
  • Contact: ChengBin LU E-mail:lcb@wheat.org.cn

Abstract:

【Objective】The characteristic of grain filling and dehydration in wheat was studied, which provided a selection method and a theoretical basis for breeding wheat variety with fast filling and dehydration, and its grain with safety moisture content without drying process at harvesting date. 【Method】 In 2015 and 2016, 7 main wheat varieties in the middle and lower of the Yangtze River Valley were used as tested materials. The grain filling traits, dehydration rate and grain moisture content at physiological maturity and harvest date were measured to explore their profiles by Logistic Growth Equation (LGE) fitting analysis and multiple comparison and correlation coefficient method. 【Result】 The results indicated that grain-filling of 7 varieties fitted LGE best, with an S-like breakthrough curve of slow-fast-slow trend, but there were significant differences in the maximum grain-filling rate, average grain-filling rate and grain-filling duration in different varieties. The maximum grain-filling rates and average grain-filling rates of Yangmai 11, Yangmai 158 and Yangmai 16 were higher, whose dry grain weights at 30 d after anthesis were more than 35 g and the grain-filling durations were shorter; The grain filling rate of Yangmai 15 was the fourth fastest, but the grain-filling duration was the longest among the 7 wheat genotypes; Ningmai 13, Yangmai 20 and Yangmai 22 had the smaller filling rates, respectively. The maximum grain-filling rate, average grain-filling rate, R1, R2 and R3 were significantly positively correlated with 1000-grain weight. The rate of grain filling was R2>R1>R3 in the three filling stages. The filling grain of wheat was basically finished at 30 d after anthesis. After the grain filling stage, it started the dehydration and drying stage. There were significant differences among the 7 genotypes in the grain moisture content at physiological maturity and harvest date, as well as the grain dehydration rate. The grain dehydration rates of Yangmai 11, Yangmai 158 and Yangmai 16 were higher than the others, whereas Yangmai15 was the lowest. The grain moisture content at harvest date was significantly (P<0.01, 0.05) correlated with the grain moisture content at physiological maturity date, the average dehydration rate after physiological maturity, and the grain dehydration rate at 2 d after physiological maturity.【Conclusion】In Yangmai 11, Yangmai 158 and Yangmai 16, the grain-filling was faster and completed earlier, and the grain dehydrated more quickly. The grain weight >35 g at 30 d after anthesis could be used as the selection parameter of the grain-filling rate. The average grain dehydration rate after physiological maturity could be a selection parameter that evaluates the dehydration property of wheat.

Key words: wheat, Yangmai, grain filling, grain dehydration

Table 1

Weather data after physiological maturity"

天气
Weather
年份
Year
生理成熟后天气Weather after physiological maturity
0 d 1 d 2 d 3 d 4 d 5 d 6 d
最高/最低温度
Highest/lowest temperature (℃)
2016 30/21 26/20 23/17 21/19 23/18 27/20 28/20
2017 28/18 29/19 30/18 30/20 23/17 25/14 31/16
天气状况
Weather
2016 多云转阵雨
Cloudy to shower
阵雨
Shower
中雨转小雨
Moderate rain to light rain
小雨
Light rain
多云
Cloudy

Overcast
阴转大雨
Overcast to heavy rain
2017
Sunny
多云
Cloudy
多云
Cloudy
多云
Cloudy
多云
Cloudy
中雨转阴
Moderate rain to overcast

Sunny

Table 2

Comparison of dry weight of grains after anthesis"

年份
Year
品种
Cultivar
千粒重 1000-grain weight (g)
10 d 15 d 20 d 25 d 30 d 35 d
2015 扬麦11 Yangmai 11 7.87ab 16.76a 25.65b 36.45a 40.59b 42.17a
扬麦15 Yangmai 15 7.46bc 14.20c 22.01d 31.06c 38.90b 42.13a
扬麦158 Yangmai 158 8.17a 15.74b 24.20c 34.90b 42.48a 42.83a
扬麦16 Yangmai 16 8.14a 15.62b 27.76a 37.85a 43.24a 44.36a
宁麦13 Ningmai 13 6.70d 12.86d 21.02de 27.38d 33.68d 34.50c
扬麦20 Yangmai 20 6.94cd 13.16d 20.28ef 28.65d 35.12cd 36.29c
扬麦22 Yangmai 22 6.60d 12.39d 19.48f 27.77d 36.13c 38.71b
平均Average 7.41 14.39 22.92 32.01 38.59 40.14
2016 扬麦11 Yangmai 11 7.14b 13.27a 22.52a 33.37a 39.97a 42.06a
扬麦15 Yangmai 15 6.55cd 11.12cd 18.74c 27.75c 35.72b 37.41b
扬麦158 Yangmai 158 6.79bc 11.32bc 19.10c 27.65c 34.67b 35.98bc
扬麦16 Yangmai 16 7.64a 12.41ab 20.63b 30.16b 35.91b 40.35a
宁麦13 Ningmai 13 5.90e 10.02de 16.67d 24.88d 30.66c 33.37cd
扬麦20 Yangmai 20 6.10de 10.35cde 17.14d 23.89d 29.71c 32.29d
扬麦22 Yangmai 22 5.75e 9.79e 16.73d 24.76d 30.56c 33.51cd
平均Average 6.55 11.18 18.79 27.50 33.88 36.43

Fig. 1

Growth trend of dry grain weight after anthesis"

Fig. 2

Change trend of grain filling rates after anthesis"

Table 3

Characteristic parameters of wheat cultivars in grain filling stage"

年份Year 品种 Cultivar Rmax Tmax Rmean T1 T2 T3 R1 R2 R3 T R2
2015 扬麦11 Yangmai 11 2.18 17.73 1.07 11.10 13.27 16.52 0.84 1.91 0.54 40.89 0.9972
扬麦15 Yangmai 15 1.90 20.52 0.95 12.35 16.34 20.33 0.81 1.66 0.47 49.03 0.9949
扬麦158 Yangmai 158 2.05 18.66 1.02 11.40 14.53 18.08 0.84 1.80 0.50 44.01 0.9968
扬麦16 Yangmai 16 2.42 17.97 1.15 11.67 12.59 15.67 0.84 2.12 0.59 39.94 0.9986
宁麦13 Ningmai 13 1.62 18.47 0.82 11.02 14.88 18.52 0.70 1.42 0.40 44.43 0.9988
扬麦20 Yangmai 20 1.70 19.64 0.86 11.78 15.71 19.55 0.73 1.49 0.42 47.04 0.9971
扬麦22 Yangmai 22 1.75 20.81 0.87 12.72 16.18 20.14 0.71 1.53 0.43 49.03 0.9961
平均Average 1.95 19.11 0.96 11.72 14.79 18.40 0.78 1.71 0.48 44.91
2016 扬麦11 Yangmai 11 2.15 19.13 1.02 12.49 13.29 16.54 0.74 1.89 0.53 42.32 0.9968
扬麦15 Yangmai 15 1.74 23.43 0.87 14.09 18.70 23.27 0.74 1.52 0.43 56.05 0.9984
扬麦158 Yangmai 158 1.76 19.30 0.85 12.27 14.06 17.50 0.65 1.54 0.43 43.83 0.9939
扬麦16 Yangmai 16 1.79 19.34 0.88 11.87 14.95 18.61 0.72 1.57 0.44 45.43 0.9965
宁麦13 Ningmai 13 1.54 20.21 0.75 12.65 15.12 18.82 0.59 1.35 0.38 46.59 0.9962
扬麦20 Yangmai 20 1.39 20.60 0.71 12.06 17.07 21.24 0.63 1.22 0.34 50.37 0.9944
扬麦22 Yangmai 22 1.54 21.30 0.76 13.16 16.27 20.25 0.61 1.35 0.38 49.68 0.9980
平均Average 1.70 20.47 0.83 12.65 15.64 19.46 0.67 1.49 0.42 47.75

Table 3

Correlation coefficient between grain filling parameters and 1000-grain weight"

年份Year Rmax Tmax Rmean T1 T2 T3 R1 R2 R3 T
2015 0.879** -0.242 0.899** 0.071 -0.47 -0.471 0.949** 0.877** 0.881** -0.402
2016 0.935** -0.314 0.955** -0.083 -0.444 -0.444 0.881** 0.935** 0.935** -0.409

Table 5

Comparison of grain moisture content at physiological maturity and harvest date (%)"

品种
Cultivar
2015 2016
生理成熟期 Physiological maturity 收获期 Harvest 生理成熟期 Physiological maturity 收获期 Harvest
扬麦11 Yangmai 11 39.50c 13.66e 36.22c 13.16e
扬麦15 Yangmai 15 43.77a 20.05a 43.33a 34.00a
扬麦158 Yangmai 158 42.04b 14.82de 39.73b 15.78d
扬麦16 Yangmai 16 42.36b 15.21cde 39.71b 16.78d
宁麦13 Ningmai13 41.97b 17.38bc 39.06b 19.40c
扬麦20 Yangmai20 42.35b 18.34ab 41.18ab 24.74b
扬麦22 Yangmai22 43.59a 17.06bcd 41.41ab 24.99b
平均 Average 42.22 16.65 40.09 21.26

Table 6

Comparison of grain dehydration rates after physiological maturity date (%·d-1)"

年份
Year
品种
Cultivar
平均脱水速率
Average dehydration rate
生理成熟后脱水速率 Dehydration rate after physiological maturity
0-2 d 2-4 d 4-6 d
2015 扬麦11 Yangmai 11 3.69ab 3.14a 1.86b 4.74a
扬麦15 Yangmai 15 3.39b 1.08e 1.74b 3.98b
扬麦158 Yangmai 158 3.89a 2.55b 2.13b 4.84a
扬麦16 Yangmai 16 3.88a 2.01c 2.75a 5.24a
宁麦13 Ningmai13 3.51ab 1.09e 2.23ab 4.75a
扬麦20 Yangmai20 3.43ab 1.36de 1.06c 4.98a
扬麦22 Yangmai22 3.79ab 1.70cd 1.86b 5.11a
平均 Average 3.67 1.85 1.95 4.81a
2016 扬麦11 Yangmai 11 3.29a 2.04a 2.77a 7.91b
扬麦15 Yangmai 15 1.33d 0.09e 1.67b 2.45c
扬麦158 Yangmai 158 3.42a 0.72c 2.41a 12.85a
扬麦16 Yangmai 16 3.28a 1.24b 2.60a 10.05b
宁麦13 Ningmai13 2.81b 0.63c 2.38a 8.88b
扬麦20 Yangmai20 2.35c 0.63c 1.83b 7.85b
扬麦22 Yangmai22 2.35c 0.35cd 1.89b 8.15b
平均 Average 2.69 0.81 2.22 8.31

Table 7

Correlation coefficient between grain moisture content at harvest and grain moisture content at physiological maturity, grain dehydration rate"

年份
Year
生理成熟期籽粒含水率
Grain moisture content during physiological maturity
籽粒平均脱水速率
Grain average dehydration rate
生理成熟后脱水速率 Dehydration rate after physiological maturity
2 d 4 d 6 d
2015 0.763* -0.890** -0.915** -0.472 -0.539
2016 0.909** -0.984** -0.816* -0.942** -0.799**
[1] ASSENG S, FOSTER I, TURNER N C . The impact of temperature variability on wheat yields. Global Change Biology, 2011,17(2):997-1012.
doi: 10.1111/j.1365-2486.2010.02262.x
[2] 刁操铨 . 作物栽培学各论. 北京: 中国农业出版社, 1994: 112.
DIAO C Q. The Theory of Crop Cultivation. Beijing: China Agriculture Press, 1994: 112. (in Chinese)
[3] 刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣 . 灌浆期短暂高温对小麦淀粉形成的影响. 作物学报, 2006,32(2):182-188.
LIU P, GUO W S, PU H C, FENG C N, ZHU X K, PENG Y X . Effects of transient high temperature during grain filling period on starch formation in wheat (Triticum aestivum L.). Acta Agronomica Sinica, 2006,32(2):182-188. (in Chinese)
[4] ZHAO H, DAI T B, JING Q, JIANG D, CAO W X . Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regulation, 2007,51(2):149-158.
doi: 10.1007/s10725-006-9157-8
[5] 高德荣, 张晓, 康建鹏, 别同德, 张伯桥, 张晓祥, 程顺和 . 长江中下游麦区小麦迟播的不利影响及育种对策. 麦类作物学报, 2014,34(2):279-283.
GAO D R, ZHANG X, KANG J P, BIE T D, ZHANG B Q, ZHANG X X, CHENG S H . Negative effects of late sowing on wheat production in middle and lower reaches of Yangtze river valley and breeding strategies. Journal of Triticeae Crops, 2014,34(2):279-283. (in Chinese)
[6] 孙花, 柴守玺, 刘小娥, 常磊 . 不同熟期小麦籽粒灌浆特性的研究. 甘肃农业大学学报, 2009,12(6):12-18.
SUN H, CHAI S X, LIU X E, CHANG L . Studies on grain filling characteristics in different maturity type wheat. Journal of Gansu Agricultural University, 2009,12(6):12-18. (in Chinese)
[7] 杨丽娟, 董昀, 盛坤, 王映红, 赵宗武 . 超强筋小麦新品种新麦26籽粒灌浆特性研究. 河南农业科学, 2011,40(11):35-37.
YANG L J, DONG J, SHENG K, WANG Y H, ZHAO Z W . Grain filling characteristics of new strong gluten wheat cultivar Xinmai 26. Journal of Henan Agricultural Sciences, 2011,40(11):35-37. (in Chinese)
[8] 王敏, 姚维传 . 小麦灌浆特性的遗传研究:I. 遗传模型及基因效应. 遗传, 1996,18(5):23-26.
WANG M, YAO W C . Inheritance of grain filling duration and rate in wheat: I. Genetic model and gene effect. Hereditas, 1996,18(5):23-26. (in Chinese)
[9] 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 闫长生, 游光霞, 肖世和 . 不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析. 作物学报, 2008,34(10):1750-1756.
doi: 10.3724/SP.J.1006.2008.01750
WANG R X, ZHANG X Y, WU L, WANG R, HAI L, YAN C S, YOU G X, XIAO S H . QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agronomica Sinica, 2008,34(10):1750-1756. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01750
[10] 孙进先, 魏秀华, 王国飞, 于新华, 王德高, 张其鲁 . 品种、播期、灌水和施氮量对小麦灌浆速率的影响. 山东农业科学, 2010,7:48-50.
SUN J X, WEI X H, WANG G F, YU X H, WANG D G, ZHANG Q L . Effects of cultivar, sowing date, irrigation and nitrogen fertilizer rate on wheat grain filling rate. Shandong Agricultural Sciences, 2010,7:48-50. (in Chinese)
[11] MASHIRINGWANI N A, MASHINGAIDZE K, KANGAI J, OLSEN K . Genetic basis of grain filling rate in wheat ( Triticum aestivum L. emend. Thell.). Euphytica, 1994,76(1/2):33-44.
doi: 10.1007/BF00024018
[12] KAMALUDDIN, SINGH R M, ABDIN M Z, KHAN M A, ALAM T, KHAN S, PRASAD L C, JOSHI A K . Inheritance of grain filling duration in spring wheat ( Triticum aestivum L. em thell). Journal of Plant Biology, 2007,50(4):504-507.
doi: 10.1007/BF03030690
[13] 任明全, 徐向阳 . 不同小麦品种籽粒灌浆特性的研究. 华北农学报, 1993,8(3):28-32.
doi: 10.3321/j.issn:1000-7091.1993.03.006
REN M Q, XU X Y . Studies on the grain filling characters of wheat cultivars. Acta Agriculturae Boreali-Sinica, 1993,8(3):28-32. (in Chinese)
doi: 10.3321/j.issn:1000-7091.1993.03.006
[14] 冯素伟, 胡铁柱, 李淦, 董娜, 李笑慧, 茹振钢, 程自华 . 不同小麦品种籽粒灌浆特性分析. 麦类作物学报, 2009,29(4):643-646.
doi: 10.7606/j.issn.1009-1041.2009.04.019
FENG S W, HU T Z, LI G, DONG N, LI X H, RU Z G, CHENG Z H . Analysis on grain filling characteristics of different wheat varieties. Journal of Triticeae Crops, 2009,29(4):643-646. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2009.04.019
[15] PURDY J D, CRANE P L . Inheritance of drying rate in mature corn(Zea mays L.). Crop Science, 1967,7(4):294-297.
doi: 10.2135/cropsci1967.0011183X000700040003x
[16] 张林, 王振华, 金益, 于天江 . 玉米收获期含水量的配合力分析. 西南农业学报, 2005,18(5):534-537.
ZHANG L, WANG Z H, JIN Y, YU T J . Combine ability analysis of water content in harvest stage in corn. Southwest China Journal of Agricultural Sciences, 2005,18(5):534-537. (in Chinese)
[17] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50(11):2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
WANG K R, LI S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017,50(11):2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
[18] CRANE P L, MILES S R, NEWMAN J E . Factors associated with varietal differences in rate of field drying in corn. Agronomy Journal, 1959,51(6):318-320.
doi: 10.2134/agronj1959.00021962005100060003x
[19] PURDY J D, CRANE P L . Inheritance of drying rate in “mature” corn ( Zea mays L.). Crop Science, 1967,7(4):294-297.
doi: 10.2135/cropsci1967.0011183X000700040003x
[20] TROYER A F, AMBROSE W B . Plant characteristics affecting field drying rate of ear corn. Crop Science, 1971,11(4):529-531.
doi: 10.2135/cropsci1971.0011183X001100040019x
[21] 郭佳丽, 吕志尧, 吕颖颖, 胡海军, 姚晓云, 贾森, 李凤海, 史振声 . 玉米粒部性状对籽粒脱水速率的影响. 玉米科学, 2014,22(4):33-38.
GUO J L, LÜ Z Y, LÜ Y Y, HU H J, YAO X Y, JIA S, LI F H, SHI Z S . Effect of kernel characteristics on kernel dehydration rate of maize. Journal of Maize Sciences, 2014,22(4):33-38. (in Chinese)
[22] 张树光, 冯学民, 高树仁, 孙生林 . 玉米成熟期籽粒含水量与果穗性状的关系. 中国农学通报, 1994,10(2):15-17.
ZHANG S G, FENG X M, GAO S R, SUN S L . Study on kernel moisture content and ear characters of maize hybrids with different maturity time. Chinese Agricultural Science Bulletin, 1994,10(2):15-17. (in Chinese)
[23] SALA R G, ANDRADE F H, CAMADRO E L, CERONO J C . Quantitative trait loci for grain moisture at harvest and field grain drying rate in maize ( Zea mays L.). Theoretical and Applied Genetics, 2006,112(3):462-471.
doi: 10.1007/s00122-005-0146-5
[24] 刘显君, 王振华, 王霞, 李庭锋, 张林 . 玉米籽粒生理成熟后自然脱水速率QTL的初步定位. 作物学报, 2010,36(1):47-52.
doi: 10.3724/SP.J.1006.2010.00047
LIU X J, WANG Z H, WANG X, LI T F, ZHANG L . Primary mapping of QTL for dehydration rate of maize kernel after physiological maturing. Acta Agronomica Sinica, 2010,36(1):47-52. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00047
[25] WANG Z H, WANG X, ZHANG L, LIU X J, DI H, LI T F, JIN X C . QTL underlying field grain drying rate after physiological maturity in maize ( Zea mays L.). Euphytica, 2012,185(3):521-528.
doi: 10.1007/s10681-012-0676-2
[26] 朱冬梅, 张晓, 别同德, 张伯桥, 张晓祥, 方正武, 高德荣 . 小麦籽粒脱水特性研究. 扬州大学学报: 农业与生命科学版, 2015,36(2):77-78.
ZHU D M, ZHANG X, BIE T D, ZHANG B Q, ZHANG X X, FANG Z W, GAO D R . Study on dehydration characteristics of wheat grains. Journal of Yangzhou University(Agricultural and Life Science Edition), 2015,36(2):77-78. (in Chinese)
[27] 何贤芳, 赵莉, 刘泽, 汪建来 . 安徽省主栽小麦品种(系)脱水及穗发芽特性研究. 滁州学院学报, 2016,18(2):70-74.
HE X F, ZHAO L, LIU Z, WANG J L . Study on dehydration and sprouting characteristics of main wheat varieties (lines) in Anhui province. Journal of Chuzhou University, 2016,18(2):70-74. (in Chinese)
[28] 莫惠栋 . 农业试验统计. 第2版. 上海: 上海科学技术出版社, 1992: 467-602.
MO H D . Agricultural Experimentation. 2nd ed. Shanghai: Shanghai Scientific and Technical Press, 1992: 467-602. (in Chinese)
[29] 高德荣, 王慧, 刘巧, 朱冬梅, 张晓, 吕国锋, 张晓祥, 江伟, 李曼 . 迟播早熟高产小麦新品种的培育. 中国农业科学, 2019,52(14):2379-2390.
doi: 10.3864/j.issn.0578-1752.2019.14.001
GAO D R, WANG H, LIU Q, ZHU D M, ZHANG X, LÜ G F, ZHANG X X, JIANG W, LI M . Breeding of new wheat varieties with early maturity and high yield under late sowing. Scientia Agricultura Sinica, 2019,52(14):2379-2390. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.14.001
[30] 蔡庆生, 吴兆苏 . 小麦籽粒生长各阶段干物质积累与粒重的关系. 南京农业大学学报, 1993,16(1):27-32.
CAI Q S, WU Z S . The relations of dry matter accumulation of grain growth stages to grain weight in wheat. Journal of Nanjing Agricultural University, 1993,16(1):27-32. (in Chinese)
[31] 罗爱花, 柴守玺 . 春小麦籽粒灌浆特性的研究. 甘肃农业大学学报, 2008,43(6):52-57.
LUO A H, CHAI S X . Grain filling characteristics of spring wheat cultivars. Journal of Gansu Agricultural University, 2008,43(6):52-57. (in Chinese)
[32] BRDAR M, BALALIC K M, KRALJEVI K B . Observed duration and average and maximum grain filling rates in wheat genotypes of different earliness. Genetika, 2004,36(3):229-235.
doi: 10.2298/GENSR0403229B
[33] 任正隆, 李尧权 . 小麦开花后的物质积累、籽粒相对生长率和灌浆速度在品种间的变异. 中国农业科学, 1981,14(6):29-33.
REN Z L, LI Y Q . Varietal differences of filling date and relative growth rate of wheat grain and dry matter accumulation after anthesis in wheat. Scientia Agricultura Sinica, 1981,14(6):29-33. (in Chinese)
[34] 张平平, 刘婷婷, 马鸿翔, 姚金保, 耿志明, 杨丹 . 长江中下游小麦品种的灌浆速率及产量结构. 西北农业科学, 2012,21(8):68-71.
ZHANG P P, LIU T T, MA H X, YAO J B, GENG Z M, YANG D . Grain filling rate and yield components investigation of wheat cultivars in the middle and lower reaches of the Yangtze river. Acta Agriculturae Boreali-Occidentalis Sinica, 2012,21(8):68-71. (in Chinese)
[35] 霍仕平, 晏庆九 . 玉米生理成熟后籽粒快速脱水的意义及其研究进展. 四川农业大学学报, 1993,11(4):626-629.
HUO S P, YAN Q J . Significance and research advance of grain moisture quick-loss after physiological maturity in maize. Journal of Sichuan Agricultural University, 1993,11(4):626-629. (in Chinese)
[36] KIM T H, HAMPTON J G, OPARA L U, HARDACRE A K, MACKAY B R . Effects of maize grain size, shape and hardness on drying rate and the occurrence of stress cracks. Journal of the Science of Food and Agriculture, 2002,82(10):1232-1239.
doi: 10.1002/(ISSN)1097-0010
[37] 牛明功, 胡炳义, 张胜, 朱自学, 刘怀攀 . 小麦种子脱水过程中多胺水平的变化. 种子, 2006,25(11):61-63.
NIU M G, HU B Y, ZHANG S, ZHU Z X, LIU H P . Changes of polyamine during dewatering of wheat seed. Seed, 2006,25(11):6l-63. (in Chinese)
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[5] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[6] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[7] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[8] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[9] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[10] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[11] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[12] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!