Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (9): 1706-1716.doi: 10.3864/j.issn.0578-1752.2018.09.008

• PLANT PROTECTION • Previous Articles     Next Articles

Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV)

ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng   

  1. National Center for Eliminating Viruses from Deciduous Fruit Tree, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning
  • Received:2017-09-26 Online:2018-05-01 Published:2018-05-01

Abstract: 【Objective】The objective of this study is to establish a method which uses reverse transcription loop-mediated isothermal amplification (RT-LAMP) technology, and to detect Apple chlorotic leaf spot virus (ACLSV) simply and quickly. 【Method】Three sets of specific primers were designed based on conserved region of ACLSV genomes. Each set of primers includes a pair of outer primer (F3/B3) and a pair of inner primer (FIP/BIP). One feasible set of primers was selected for the RT-LAMP reaction. RT-LAMP reaction system was optimized, that is, the concentration of Mg2+ (0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 mmol·L-1), dNTPs (0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 mmol·L-1), Betaine (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 mol·L-1), FIP/BIP (0.8, 1.2, 1.6, 2.0, 2.4 µmol·L-1) and F3/ B3 (0, 0.1, 0.2, 0.3, 0.4 µmol·L-1), respectively. The RT-LAMP reaction condition was optimized, using optimized reaction system, reaction temperature was set to 65, 63, 61, 59, 57℃ and reaction time was set for 90 min. In the process of primers screening and optimizing the reaction system, fluorescent pigment was added to the reaction system and real-time PCR instrument was used. The whole process was detected in real-time by fluorescence signal accumulation. Finally, the amplification curve was used to analyze the reaction result. the specificity detection of RT-LAMP was tested by using different RNA templates of infected leaves from ACLSV, Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV) and Apple mosaic virus (ApMV). To assess the detection sensitivity, 100, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6 diluents of original RNA were used as templates of RT-LAMP. To evaluate the application value of this method, 23 apple leaf samples were collected randomly in the field, the optimized RT-LAMP and RT-PCR were used to detect the samples, SYBR GreenⅠwas added to visualize the detection. 【Result】 The RT-LAMP method to detect ACLSV was established. The optimized detection system was 6.0 mmol·L-1 Mg2+, 1.2 mmol·L-1 dNTPs, 0.2 mol·L-1 Betaine, 1.6 µmol·L-1 FIP/BIP and 0.2 µmol·L-1 F3/B3 primer. The optimum reaction conditions were 59 and 60 min. In the specificity test, only the ACLSV test result was positive, the controls were all negative. In the sensitivity test, the 10-3 RNA dilution could be detected by RT-LAMP method. It was 100 times higher sensitivity than RT-PCR method. The positive rate of RT-PCR of randomly selected 23 apple leaf samples was 52.2%, and RT-LAMP was 65.2%. Detection rate of RT-LAMP was higher than that of RT-PCR. 【Conclusion】The established ACLSV RT-LAMP detection method is simple, quick, sensitive and low cost. It can be applied in field investigation, seeding breeding and customs quarantine.

Key words: apple, Apple chlorotic leaf spot virus (ACLSV), reverse transcription loop-mediated isothermal amplification (RT-LAMP), real-time PCR, virus detection

[1]    李文慧, 牛建新. 苹果病毒的研究现状. 北方果树, 2006(4): 3-5.
LI W H, NIU J X. The research status of apple viruses. Northern Fruits, 2006(4): 3-5. (in Chinese)
[2]    Sato K, Yoshikawa N, Takahashi T. Complete nucleotide sequence of the genome of an apple isolate of Apple chlorotic  leaf spot virus. The Journal of General Virology, 1993, 74(9): 1927-1931.
[3]    Zhu H, Wang G P, Hu H J,TIAN R, HONG N. The genome sequences of three isolates of Apple chlorotic leaf spot virus from pear (Pyrus sp.) in China. Canadian Journal of Plant Pathology, 2014, 36(3): 396-402.
[4]    Wang M, Dai H. First report of Apple chlorotic leaf spot virus in Hawthorn in China. Plant Disease, 2015, 99(1): 164.
[5]    Niu F, Pan S, Wu Z, JIANG D, LI S. Complete nucleotide sequences of the genomes of two isolates of apple chlorotic leaf spot virus from peach (Prunus persica) in China. Archives of Virology, 2012, 157(4): 783-786.
[6]    German-retana S, Bergey B, Delbos R P, CANDRESSE, DUNEZ J. Complete nucleotide sequence of the genome of a severe cherry isolate of apple chlorotic leaf spot trichovirus (ACLSV). Archives of Virology, 1997, 142(4): 833-841.
[7]    Jelkmann W. The nucleotide sequence of a strain of Apple chlorotic leaf spot virus (ACLSV) responsible for plum pseudopox and its relation to an apple and plum bark split strain. Phytopathology, 1996, 86(Suppl. 11): S101.
[8]    陈柳, 尚巧霞, 陈笑瑜, 邢冬梅, 冉策, 魏艳敏, 赵晓燕, 刘正坪. 草莓轻型黄边病毒RT-LAMP检测方法的建立. 中国农业科学, 2015, 48(3): 613-620.
CHEN L, SHANG Q X, CHEN X Y, XING D M, RAN C, WEI Y M, ZHAO X Y, LIU Z P. Detection of Strawberry mild yellow edge virus RT-LAMP. Scientia Agricultura Sinica, 2015, 48(3): 613-620. (in Chinese)
[9]    洪霓, 王国平. 苹果褪绿叶斑病毒生物学及生化特性研究. 植物病理学报, 1999, 29(1): 77-81.
HONG N, WANG G P. The biological and biochemical characterization of Apple chlorotic leaf spot virus. Acta Phytopathologica Sinica, 1999, 29(1): 77-81. (in Chinese)
[10]   耿超, 牟安丽, 刘志强, 李向东, 周涛. 苹果褪绿叶斑病毒外壳蛋白基因的原核表达及抗血清制备. 果树学报, 2012, 29(5): 755-758.
GENG C, MU A L, LIU Z Q, LI X D, ZHOU T. Preparation of antiserum to Apple chlorotic leaf spot virus with coat protein expressed in E. coli. Journal of Fruit Science, 2012, 29(5): 755-758. (in Chinese)
[11]   郑佩燕, 孙宝清, 黄惠敏, 韦妮莉, 李靖, 陈德晖. 采用酶联免疫捕获法和荧光酶联免疫吸附法检测过敏原IgE抗体的比较分析. 重庆医科大学学报, 2011, 36(5): 595-598.
ZHENG P Y, SUN B Q, HUANG H M, wei n l, LI J, CHEN D H. Capture ELISA and FEIA assay for allergen-specific IgE antibody: a comparative analysis. Journal of Chongqing Medical University, 2011, 36(5): 595-598. (in Chinese)
[12]   Lien K Y, Lee W C, Lei H Y, Lee G B. Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosensors and Bioelectronics, 2007, 22(8): 1739-1748.
[13]   王婧, 毕阳, 朱艳, 韩舜愈, 祝霞, 盛文军, 李敏. 巢式PCR快速检测西瓜细菌性果斑病菌. 中国农业科学, 2014, 47(2): 284-291.
WANG J, BI Y, ZHU Y, HAN S Y, ZHU X, SHENG W J, LI M. Nested-PCR rapidly detect Acidovorax avenae subsp. citrulli from watermelon seeds. Scientia Agricultura Sinica, 2014, 47(2): 284-291. (in Chinese)
[14]   Gundersen D E, Lee I M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 1996, 35(3): 144-151.
[15]   范旭东, 董雅凤, 张尊平, 任芳, 胡国君, 朱红娟. 葡萄病毒分子检测技术研究进展. 园艺学报, 2014, 41(5): 1009-1019.
FAN X D, DONG Y F, ZHANG Z P, REN F, HU G J, ZHU H J. Progress on molecular detection of grapevine viruses. Acta Horticulturae Sinica, 2014, 41(5): 1009-1019. (in Chinese)
[16]   ?EPIN U, GutiérrÉz-Aguirre I, Bala?ic L, POMPE- NOVAK M, GRUDEN K, RAVNIKAR M. A one-step reverse transcription real-time PCR assay for the detection and quantitation of Grapevine fanleaf virus. Journal of Virological Methods, 2010, 170(1/2): 47-56.
[17]   Watpade S, Raigond B, Thakur P D, Handa A, Pramanick K K, Sharma Y P, Tomar M. Molecular detection of latent Apple chlorotic leaf spot virus in elite mother plants of apple. Indian Journal of Virology, 2012, 23(3): 359-363.
[18]   Hao L, Xie J, Chen S, Wang S, Gong Z, Ling K S, Guo L, Fan Z, Zhou T. A multiple RT-PCR assay for simultaneous detection and differentiation of latent viruses and apscarviroids in apple trees. Journal of Virological Methods, 2016, 234: 16-21.
[19]   Peng D, Xie J, Qiang W, LING KS, GUO L, FAN Z, ZHOU T. One-step reverse transcription loop-mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus. Journal of Virological Methods, 2017, 248: 154-158.
[20]   Notomi T, Okayama H, Masubuchi H, Yonekawa    T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12): e63.
[21]   周彤, 杜琳琳, 范永坚, 周益军. 水稻黑条矮缩病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2012, 45(7): 1285-1292.
ZHOU T, DU L L, FAN Y J, ZHOU Y J. Development of a RT-LAMP assay for rapid detection of Rice black-streaked dwarf virus. Scientia Agricultura Sinica, 2012, 45(7): 1285-1292. (in Chinese)
[22]   Mori Y, Kitao M, Tomita N, NOTOMI T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical and Biophysical Methods, 2004, 59(2): 145-157.
[23]   MORI Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy, 2009, 15(2): 62-69.
[24]   刘科宏, 陈洪明, 周彦, 李中安. 柑橘黄化脉明病毒RT-LAMP检测方法的建立. 园艺学报, 2015, 42(5): 997-1002.
LIU K H, CHEN H M, ZHOU Y, LI Z A. Establishment of RT-LAMP assay for detection of Citrus yellow vein clearing virus. Acta Horticulturae Sinica, 2015, 42(5): 997-1002. (in Chinese)
[25]   thai H T C, Le M Q, Vuong C D, PARIDA M, MINEKAWA H, NOTOMI T, HASEBE F, MORITA K. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndromeCoronavirus. Journal of Clinical Microbiology, 2004, 42(5): 1956-1961.
[26]   Harper S J, Ward L I, Clover G R. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology, 2010, 100(12): 1282-1288.
[27]   李健, 陈沁, 熊炜, 方雪恩. 口蹄疫病毒RT-LAMP检测方法的建立. 病毒学报, 2009, 25(2): 137-142.
LI J, CHEN Q, XIONG W, FANG X N. Establishment of RT-LAMP for rapid detection of foot-and-mouth disease virus. Chinese Journal of Virology, 2009, 25(2): 137-142. (in Chinese)
[28]   李月华. LAMP与SYBR GREEN I实时荧光定量PCR方法检测酸奶中葡糖杆菌的研究[D]. 保定: 河北农业大学, 2015.
LI Y H. Study on LAMP and SYBR GREEN I real time PCR for detection of Gluconobacter in yoghourt[D]. Baoding: Agricultural University of Hebei, 2015. (in Chinese)
[29]   朱韩武, 曹俊, 周华云, 李菊林, 朱国鼎, 顾亚萍, 王伟明, 刘耀宝, 陶志勇, 高琪. 环介导等温扩增技术检测蚊体内间日疟原虫子孢子的研究. 中国血吸虫病防治杂志, 2010, 22(2): 158-163.
ZHU H W, CAO Y, ZHOU H Y, LI J L, ZHU G D, GU Y P, WANG W M, LIU Y B, TAO Z Y, GAO Q. Detection of Plasmodium vivax sporozoites-carrying mosquitoes using loop-mediated isothermal amplification (LAMP). Chinese Journal of Schistosomiasis Control, 2010, 22(2): 158-163. (in Chinese)
[30]   卢永灿. 三种梨病毒实时荧光定量RT-PCR和RT-LAMP检测技术的研究[D]. 武汉: 华中农业大学, 2016.
lU Y C. The establishment of real-time RT-PCR and RT-LAMP techniques for the detection of three viruses infecting pear plants[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[31]   王永江, 周彦, 李中安, 苏华楠, 黄爱军, 唐科志, 周常勇. 柑橘衰退病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2013, 46(3): 517-524.
WANG Y J, ZHOU Y, Li Z A, SU H N, HUANG A J, TANG K Z, ZHOU C Y. A RT-LAMP assay for detection of Citrus tristeza virus. Scientia Agricultura Sinica, 2013, 46(3): 517-524. (in Chinese)
[32]   Ju H J. Simple and rapid detection of Potato leafroll virus by reverse transcription loop-mediated isothermal amplification. Plant Pathology Journal, 2011, 27(4): 385-389.
[33]   姜珊珊, 冯佳, 张眉, 王升吉, 辛志梅, 吴斌, 辛相启. 甘薯羽状斑驳病毒 RT-LAMP 快速检测方法的建立. 中国农业科学, 2018, 51(7): 1294-1302.
JIANG S S, FENG J, ZHANG M, WANG S J, XIN Z M, WU B, XIN X Q. Development of RT-LAMP assay for rapid detection of Sweet potato feathery mottle virus (SPFMV). Scientia Agricultura Sinica, 51(7): 1294-1302. (in Chinese)
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[9] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[10] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[11] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[12] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[13] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[14] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[15] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!