Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (5): 821-834.doi: 10.3864/j.issn.0578-1752.2018.05.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Studies of Plant Type Traits in Maize

LIU Kun1, ZHANG XueHai1, SUN GaoYang1, YAN PengShuai1, GUO HaiPing1, CHEN SiYuan2, XUE YaDong1, GUO ZhanYong1, XIE HuiLing1, TANG JiHua1, LI WeiHua1   

  1. 1College of Agronomy, HenanAgriculturalUniversity/Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002; 2No.1 Middle School of Zhengzhou, Zhengzhou 450002
  • Received:2017-09-26 Online:2018-03-01 Published:2018-03-01

Abstract: 【Objective】 Plant morphological traits are the basis of ideotype-based maize breeding which are closely related to photosynthetic efficiency, lodging resistance and grain yields. Genome-wide association studies (GWAS) of 558 629 SNPs with genome-wide coverage was used to elucidate the genetic basis of six plant morphological traits, including total number of leaves (LN), leaf number above ear (LNAN), the ratio of LNAN to LN (LNAN/LN), plantheight (PH), earheight (EH) and the ratio of EH to PH (EH/PH), which could provide theoretical basis in enhancing ideotype-based maize breeding and facilitating the genetic improvement of new maize varieties with high plant density and lodging resistance. 【Method】 In this study, a representative panel of 284 inbred lines planted in Zhengzhou and Xunxian, including temperate, subtropical and tropical materials, were used for association mapping.【Result】 All traits measured in the two locations exhibited an approximately normal distribution. Highly positive or negative correlations between paired traits were observed. Variance analysis of these traits indicated that significant variations were observed across environment, genotype and the genotype × environment interaction. When test with the optimal GWAS model, we found that Q model showed high type I errors (false positive), while Q+K model were too strict in reducing false positive. K model is the best in reducing false positive. Totally, 56 significant SNP-trait associations involving in 17 loci were identified for five traits (P≤3.99E-6), each locus can explain phenotypic variation ranging from 7.97% to 10.56%. Moreover, four loci were detected in both environments, indicating that these 4 loci were less affected by environment effects and could be stable in different environments. All potential candidate genes and their annotations within 100 kb (50 kb upstream and downstream of the lead SNP) of the loci were identified, in total, 80 candidate genes were found, including 42 genes that have functional annotation. For example,the gene GRMZM2G161293 encoding a protein that has acetylgluco-saminyl transferase is associated with plant height and ear height. It catalyzes the transfer of the amino group from N-acetyl glucosamine to glucose, which may improve yield by influencing the content of soluble sugars in maize kernels.【Conclusion】 The results indicated that K model having the best result in reducing the type I errors (false positive). Based on K model, a total of 17 loci associated with plant morphological traits were identified.

Key words: maize (Zea mays L.), genome-wide association study, plant type traits, ideotype

[1]    Donald M. Breeding of crop ideotypes. Euphytica, 1968, 17(3): 385-403.
[2]    汤继华, 谢惠玲, 黄绍敏, 胡彦民, 刘宗华, 季洪强, 寇志安. 缺氮条件下玉米自交系叶绿素含量与光合效率的变化. 华北农学报, 2005, 20(5): 10-12.
TANG J H, XIE H L, HUANG S M, HU Y M, LIU Z H, JI H Q, KOU Z A. The changes of the content for chlorophyll and photosynthetic productivity in maize inbred lines under the low-nitrogen stress. Acta Agriculturae Boreali-Sinica, 2005, 20(5): 10-12. (in Chinese)
[3]    何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452.  
HE K H, CHANG L G, CUI T T, QU J Z, GUO D W, XU S T, ZHANG X H, ZHANG R H, XUE J Q, LIU J C. Mapping QTL for plant height and ear height in maize under multi-environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452. (in Chinese)
[4]    殷鹏程. 玉米株高和穗位高的QTL定位[D]. 武汉: 华中农业大学, 2015.
YIN P C. QTL mapping of plant height and ear height in maize[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[5]    杨俊品, 荣廷昭, 向道权, 唐海涛, 黄烈建, 戴景瑞. 玉米数量性状基因定位. 作物学报, 2005, 31(2): 188-196.
YANG J P, RONG T Z, XIANG D Q, TANG H T, HUANG L J, DAI J R. QTL mapping of quantitative traits in maize. Acta Agronomica Sinica, 2005, 31(2): 188-196. (in Chinese)
[6]    曹永国, 王国英, 王守才, 魏艳玲, 卢江, 谢友菊, 戴景瑞. 玉米RFLP遗传图谱的构建及矮生基因定位. 科学通报, 1999, 44(20): 2178-2182.
CAO Y G, WANG G Y, WANG S C, WEI Y L, LU J, XIE Y J, DAI J R. Construction and localization of dwarf gene RFLP genetic map of maize. Chinese Science Bulletin, 1999, 44(20): 2178-2182. (in Chinese)
[7]    兰进好, 李新海, 高树仁, 张宝石, 张世煌. 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005, 31(10): 1253-1259. 
LAN J H, LI X H, GAO S R, ZHANG B S, ZHANG S H. QTL analysis of yield components in maize under different environments. Acta Agronomica Sinica, 2005, 31(10): 1253-1259. (in Chinese)
[8]    许诚, 王彬, 毛克举, 胡彦民, 谢惠玲, 汤继华. 利用单片段代换系群体定位玉米株型性状QTL. 玉米科学, 2014, 22(2): 28-34. 
XU C, WANG B, MAO K J, HU Y M, XIE H L, TANG J H. QTL mapping for plant-type related traits using single segment substitution lines in maize. Journal of Maize Sciences, 2014, 22(2):28-34. (in Chinese)
[9]    张志明, 赵茂俊, 荣廷昭, 潘光堂. 玉米SSR连锁图谱构建与株高及穗位高QTL定位. 作物学报, 2007, 33(2): 341-344.
ZHANG Z M, ZHAO M J, RONG T Z, PAN G T. SSR linkage map construction and qtl identification for plant height and ear height in maize (Zea mays L). Acta Agronomica Sinica, 2007, 33(2): 341-344. (in Chinese)
[10]   Xing A, Gao Y, Ye L F,CAI L CHING A, LLACA V, JOHNSON B, LIU L, YANG X H, KANG D M, YAN J B, LI J S. A rare SNP mutation in brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66(13): 3791-3802.  
[11]   Teng F, Zhai L, Liu R, BAI W, WANG L, HUO D, TAO Y, ZHENG Y, ZHANG Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant Journal for Cell & Molecular Biology, 2013, 73(3): 405-416. 
[12]   YANG N, LU Y, YANG X, HUANG J, ZHOU Y, ALI F, WEN W, LIU J, LI J, YAN J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. Plos Genetics, 2014, 10(9): e1004573.
[13]   PAN Q, XU Y, LI K, PENG Y, ZHAN W, LI W, LI L, YAN J. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873.
[14]   SHAVER G R. Mineral nutrition and leaf longevity in ledum palustre the role of individual nutrients and the timing of leaf mortality. Oecologia, 1983, 56(2): 160-165.
[15]   Dwyer L M, Andrews C J, Stewart D W, MA B L, DUGAS J A. Carbohydrate levels in field-grown leafy and normal maize genotypes. Crop Science, 1995, 35(4): 1020-1027.
[16]   Andrews C J, Dwyer L M, Stewart D W, DUGS J A, BONN P, DEYER L M. Distribution of carbohydrate during grainfill in leafy and normal maize hybrids. Canadian Journal of Plant Science, 2000, 80(1): 87-95.  
[17]   Stewart D W, Dwyer L M. Mathematical characterization of maize canopies. Agricultural & Forest Meteorology, 1993, 66(3): 247-265.
[18]   Modarres A M, Hamilton R I, Dwyer L M, STEWART D W, DIJAK M, SMITH D L. Leafy reduced-stature maize for short-season environments: yield and yield components of inbred lines. Euphytica, 1997, 97(2): 129-138.
[19]   Begna S H, Hamilton R I, Dwyer L M, STEWART D W, SMITH D L. Effects of population density on the yield and yield components of leafy reduced-stature maize in short-season areas. Journal of Agronomy & Crop Science, 2010, 178(2): 103-110.   
[20]   DIJAK M, MODARRES A M, HAMILTON R I, DWYER L M, STEWART D W, MATHER D E, SMITH D L. Leafy reduced-stature maize hybrids for short-season environments. Crop Science, 1999, 39(39): 1106-1110.
[21]   曹靖生. 几个玉米株型性状的遗传规律研究. 黑龙江农业科学, 1995(3): 16-19.
CAO J S. Genetic studies on some plant type traits in maize. Heilongjiang Agricultural Science, 1995(3): 16-19. (in Chinese)
[22]   CORETEAM R. R: a language and environment for statistical computing. Computing,2015, 14: 12-21.
[23]   LI M X, YEUNG J M, CHERNY S S, SHAM P C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 2012, 131(5): 747-756.
[24]   LI H, PENG Z, YANG X, WANG W, FU J, WANG J H, HAN Y G, CHAI Y C, GUO T T, YANG N, LIU J, WARBURTON M L, CHENG Y B, HAO X M, ZHANG P, ZHAO J Y, LIU Y J, WANG G Y, LI J S, YAN J B. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
[25]   Feng Y, Zheng Q, Song H, WANG Y, WANG A, JIANG L, YAN J, ZHENG Y, YUE B. Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theoretical and Applied Genetics, 2015, 128(11): 2341-2350.
[26]   Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526
[27]   陈荣江, 刘永录. 玉米若干农艺性状的遗传相关分析. 河南科技学院学报(自然科学版), 1997(2): 19-24. 
CHEN R J, LIU Y L. Genetic relation analysis of agronomic characters maize. Journal of Henan Institute of Science and Technology (Natural science Edition), 1997(2): 19-24. (in Chinese)
[28]   Xiao Y, Tong H, Yang X, XU S, PAN Q, QIAO F, RAIHAN M S, LUO Y, LIU H, ZHANG X, YANG N, WANG X, DENG M, JIN M, ZHAO L, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N, WANG H, CHEN G, CAI Y, XU G, WANG W, ZHANG D, YAN J. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2015, 210(3): 1095-1106. 
[29]   郑克志, 李元, 瞿会, 闫伟, 张旷野, 宋茂兴, 吕香玲, 李凤海, 史振声. 玉米株高和穗位高的QTL定位. 江苏农业科学, 2015, 43(5): 61-63.  
ZHENG K Z, LI Y, QU H, YAN W, ZHANG K Y, SONG M X, Lü X L, LI F H, SHI Z S. QTL mapping of plant height and ear height in maize. Jiangsu Agricultural Sciences, 2015, 43(5): 61-63. (in Chinese)
[30]   SAMAYOA L F, MALVAR R A, OLUKOLU B A, HOLLAND J B, BUTRON A. Genome-wide association study reveals a set of genes associated with resistance to the mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC plant biology, 2015, 15: 35.
[1] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[2] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[3] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[4] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[5] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[6] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[7] ZHANG XiaoQiong,GUO Jian,DAI ShuTao,REN Yuan,LI FengYan,LIU JingBao,LI YongXiang,ZHANG DengFeng,SHI YunSu,SONG YanChun,LI Yu,WANG TianYu,ZOU HuaWen,LI ChunHui. Phenotypic Variation and Genome-wide Association Analysis of Root Architecture at Maize Flowering Stage [J]. Scientia Agricultura Sinica, 2019, 52(14): 2391-2405.
[8] SHI DaKun, YAO TianLong, LIU NanNan, DENG Min, DUAN HaiYang, WANG LuLin, WAN Jiong, GAO JiongHao, XIE HuiLing, TANG JiHua, ZHANG XueHai. Genome-Wide Association Study of Chlorophyll Content in Maize [J]. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857.
[9] SHEN ManMan, QU Liang, DOU TaoCun, MA Meng, GUO Jun, LU Jian, HU YuPing, LI YongFeng, WANG KeHua. Genome-Wide Association of Spleen Weight in Layer Chicken [J]. Scientia Agricultura Sinica, 2018, 51(6): 1213-1222.
[10] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[11] GAO Xing, LI YongXiang, YANG MingTao, LI BeiBei, LI ChunHui, SONG YanChun, ZHANG DengFeng, WANG TianYu, LI Yu, SHI YunSu. Genetic Dissection of Grain Filling Related Traits Based on a High-Density Map in Maize [J]. Scientia Agricultura Sinica, 2017, 50(21): 4087-4099.
[12] ZHOU QingHong, ZHOU Can, ZHENG Wei, FU DongHui. Genome Wide Association Analysis of Silique Length in Brassica napus L. [J]. Scientia Agricultura Sinica, 2017, 50(2): 228-239.
[13] GAO BaoZhen, LIU Bo, LI ShiKai, LIANG JianLi, CHENG Feng, WANG XiaoWu, WU Jian. Genome-Wide Association Studies for Flowering Time in Brassica rapa [J]. Scientia Agricultura Sinica, 2017, 50(17): 3375-3385.
[14] GAO YiHong, YAN JinXiang, TU ZhengJun, LENG YuJia, CHEN Long, HUANG LiChao, DAI LiPing, ZHANG GuangHeng, ZHU Li, HU Jiang, REN DeYong, GUO LongBiao, QIAN Qian, WANG DanYing, ZENG DaLi. Genome-Wide Association Analysis on Flag Leaf Width Under Different Nitrogen Levels in Rice [J]. Scientia Agricultura Sinica, 2017, 50(14): 2635-2646.
[15] CAO YiBing, HUANG ShouBing, WANG YuanYuan, XIA YuQing, MENG QingFeng, TAO HongBin, WANG Pu. Dynamic Simulation of Relationship Between Light Interception and Growth of Maize Population and Its Application [J]. Scientia Agricultura Sinica, 2017, 50(11): 1973-1981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!