Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (14): 2635-2646.doi: 10.3864/j.issn.0578-1752.2017.14.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genome-Wide Association Analysis on Flag Leaf Width Under Different Nitrogen Levels in Rice

GAO YiHong, YAN JinXiang, TU ZhengJun, LENG YuJia, CHEN Long, HUANG LiChao, DAI LiPing, ZHANG GuangHeng, ZHU Li, HU Jiang, REN DeYong, GUO LongBiao, QIAN Qian, WANG DanYing, ZENG DaLi   

  1. China National Rice Research Institute/State Key Laboratory of Rice Biology, HangZhou 310006
  • Received:2017-01-12 Online:2017-07-16 Published:2017-07-16

Abstract: 【Objective】 The objective of this experiment is to study the genetic mechanism of flag leaf width and its response to different nitrogen fertilizer rates, and provide advantageous germplasm resources and genetic markers for the improvement of nitrogen use efficiency in rice breeding. 【Method】 Based on re-sequencing of 134 rice landraces, a total of 3 356 591 SNPs distributed on the whole genome were identified. Three different nitrogen levels were assigned as the main plot in the split-plot design, and rice landraces are assigned at random to the subplots within each whole plot. Three nitrogen levels including low nitrogen (no nitrogen fertilizer), normal nitrogen (96 kg·hm-2) and high nitrogen (192 kg·hm-2) were applied under normal field cultivation, respectively. The EMMAX method was used to analyze the genetic relationship and EIGENSOFT was employed to detect the population structure. The mixed linear model was used to detect the potential genome-wide association between single nucleotide polymorphisms (SNPs) and the flag leaf width performance or response under low, medium and high nitrogen treatments. 【Result】The results showed that the flag leaf width displayed normal distribution in N0, N1 and N2 treatments, respectively. The variation of flag leaf width caused by the varietal differences and the different nitrogen levels, and the significant positive correlation between nitrogen fertilizer and flag leaf width were detected at all nitrogen levels. A total of 14 SNPs on five chromosomes presented significant association with the flag leaf width under three different nitrogen levels. The estimated minimum allele frequency was 0.46 at low nitrogen level, which indicate those loci are widely distributed in the association population. While the estimated minimum allele frequencies were lower at normal nitrogen and high nitrogen levels. One SNP located on chromosome 12 was found both at normal nitrogen and high nitrogen levels. Besides, another SNP on chromosome 12 was also detected at high nitrogen. Its flank contained a candidate gene LOC_Os12g25660, which belongs to the super-family of cytochrome P450. It is a homologous gene of OsBR6ox which was confirmed in regulating the flag leaf width in rice. Based on the variation of leaf width at different nitrogen levels, twenty SNPs and eight SNPs were identified to low nitrogen and high nitrogen response, respectively. Among them, the nitrogen utilization related gene, OsATG7, was associated with high nitrogen response on chromosome 1. 【Conclusion】 In this study, a total of 42 SNPs associated with flag leaf width and response to different nitrogen were identified based on the genome-wide association analysis.

Key words: Oryza sativa, genome-wide association study, leaf width, nitrogen fertilizer

[1]    ANDREWS M, RAVEN J A, LEA P J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology, 2013, 163: 174-199.
[2]    ZHANG Q F. Strategies for developing green super rice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(42): 16402-16409.
[3]    ZHANG Y J, TAN L B, ZHU Z F, YUAN L X, XIE D X, SUN C Q. TOND1 confers tolerance to nitrogen deficiency in rice. Plant Journal for Cell & Molecular Biology, 2015, 81(3): 367-376.
[4]    HU B, WANG W, OU S, TANG J, LI H, CHE R, ZHANG Z, CHAI X, WANG H, Wang Y, LIANG C, LIU L, PIAO Z, DENG Q, DENG K, XU C, LIANG Y, ZHANG L, LI L, CHU C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7): 834-838.
[5]    SUN H, QIAN Q, WU K, LUO J, WANG S, ZHANG C, MA Y, LIU Q, HUANG X, YUAN Q, HAN R, ZHAO M, DONG G, GUO L, ZHU X, GOU Z, WANG W, WU Y, LIN H, FU X. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 46(2): 652.
[6]    GALLAIS A, HIREL B. An approach to the genetics of nitrogen use efficiency in maize. Journal of Experimental Botany, 2004, 55(396): 295-306.
[7]    HIREL B, LE GOUIS J, NEY B, GALLAIS A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 2007, 58(9): 2369-2387.
[8]    BI Y M, KANT S, CLARKE J, GIDDA S, MING F, XU J, ROCHON A, SHELP B J, HAO L, ZHAO R, MULLEN R T, ZHU T, ROTHSTEIN S J. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell & Environment, 2009, 32(12):1749-1760.
[9]    XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency. Plant Biology, 2012, 63(63): 153-182.
[10]   TONG H H, MEI H W, YU X Q, XU X Y, LI M S, ZHANG SQ, LUO L J. Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genetica Sinica, 2006, 33(5): 458-467.
[11]   CHO Y I, JIANG W, CHIN J H, PIAO Z, CHO Y G, Mccouch S, Koh H J. Identification of QTLs associated with physiological nitrogen use efficiency in rice. Molecules & Cells, 2007, 23(1): 72-79.
[12]   凌启鸿. 作物群体质量. 上海: 上海科技出版社, 2000: 42-120.
LING Q H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000: 42-120. (in Chinese)
[13]   殷春渊, 王书玉, 薛应征, 刘贺梅, 张栩, 孙建权, 王和乐, 胡秀明. 氮肥处理对新稻18号水稻产量及叶片形态特征的影响. 中国农业科技导报, 2012, 14(3): 101-106.
YIN Q Y, WANG Y S, XUE Y Z, LIU H M, ZHANG X, SUN J Q, WANG H L, HU X M. Effects of nitrogen treatment on rice yield and leaves conformation characteristics of 'Xindao No.18'. Journal of Agricultural Science and Technology, 2012, 14(3): 101-106. (in Chinese)
[14]   ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H, NORTON G J, ISLAM M R, REYNOLDS A, MEZEY J, MCCLUNG A M, BUSTAMANTE C D, MCCOUCH S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2(1): 1020-1021.
[15]   ATWELL S, HUANG YS, VILHJÁLMSSON BJ, WILLEMS G, HORTON M, LI Y, MENG D, PLATT A, TARONE A M, HU T T, JIANG R, MULIYATI N W, ZHANG X, AMER M A, BAXTER I, BRACHI B, CHORY J, DEAN C, DEBIEU M, DE MEAUX J, ECKER JR, FAURE N, KNISKERN JM, JONES JD, MICHAEL T, NEMRI A, ROUX F, SALT DE, TANG C, TODESCO M, TRAW MB, WEIGEL D, MARJORAM P, BOREVITZ JO, BERGELSON J, NORDBORG M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465(7298): 627-631.
[16]   HUANG X H, WEI X H, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C, ZHU C, LU T, ZHANG Z, LI M, FAN D, GUO Y, WANG A, WANG L, DENG L, LI W, LU Y, WENG Q, LIU K, HUANG T, ZHOU T, JING Y, LI W, LIN Z, BUCKLER ES, QIAN Q, ZHANG Q F, LI J, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
[17]   ZHOU Z K, JIANG Y, WANG Z, GOU Z, LYU J, LI W, YU Y, SHU L, ZHAO Y, MA Y, FANG C, SHEN Y, LIU T, LI C, LI Q, WU M, WANG M, WU Y, DONG Y, WAN W, WANG X, DING Z, GAO Y, XIANG H, ZHU B, LEE S H, WANG W, TIAN Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.
[18]   WEN W, LI D, LI X, GAO Y, LI W, LI H, LIU J, LIU H, CHEN W, LUO J, YAN J. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 2015, 5(2): 487-507.
[19]   KUMAR V, SINGH A, MITHRA S V, KRISHNAMURTHY S L, PARIDA S K, JAIN S, TIWARI K K, KUMAR P, RAO A R, SHARMA S K, KHURANA J P, SINGH N K, MOHAPATRA T.Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Research, 2015, 22(2): 133-145.
[20]   WANG C, YANG Y, YUAN X, XU Q, FENG Y, YU H, WANG Y, WEI X. Genome-wide association study of blast resistance in indica rice. BMC Plant Biology, 2014, 14(1): 1-11.
[21]   ZHU D, KANG H, LI Z, LIU M, ZHU X, WANG Y, WANG D, WANG Z, LIU W, WANG G L. A genome-wide association study of field resistance to magnaporthe oryzae in rice. Rice, 2016, 9(1): 44.
[22]   CHEN W, GAO Y, XIE W, GONG L, LU K, WANG W, LI Y, LIU X, ZHANG H, DONG H, ZHANG W, ZHANG L, YU S, WANG G, LIAN X, LUO J. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 2014, 46(7):714-721.
[23]   王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力. 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学, 2014, 28(6): 589-597.
WANG L, HUANG L C, DAI L P, YANG Y L, XUE J, LENG Y J, ZHANG G H, HU J, GAO Z Y, DONG G J, GUO L B, QIAN Q, ZENG D L. QTL analysis for rice leaf morphology at maturity stage using a recombinant inbred line population derived from a cross between nipponbare and 9311. Chinese Journal of Rice Science, 2014, 28(6): 589-597. (in Chinese)
[24]   Murray M G, Thompson W F. Rapid isolation of high  molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325.
[25]   Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.
[26]   Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladistics, 1989, 5: 164-166.
[27]   Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904-909.
[28]   Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 2010, 42(4): 348-354.
[29]   Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genetic Epidemiology, 2008, 32(3): 227-234.
[30]   MORI M, NOMURA T, OOKA H, ISHIZAKA M, YOKOTA T, SUGIMOTO K, OKABE K, KAJIWARA H, SATOH K, YAMAMOTO K, HIROCHIKA H, KIKUCHI S. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology, 2002, 130(3): 1152-1161.
[31]   HONG Z, UEGUCHI-TANAKA M, SHIMIZU-SATO S, INUKAI Y, FUJIOKA S, SHIMADA Y, TAKATSUTO S, AGETSUMA M, YOSHIDA S, WATANABE Y, UOZU S, KITANO H, ASHIKARI M, MATSUOKA M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal, 2002, 32(4): 495-508.
[32]   LI M, XIONG G, LI R, CUI J, TANG D, ZHANG B, PAULY M, CHENG Z, ZHOU Y. Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant Journal for Cell & Molecular Biology, 2009, 60(6):1055-1069.
[33]   HU J, ZHU L, ZENG D, GAO Z, GUO L, FANG Y, ZHANG G, DONG G, YAN M, LIU J, QIAN Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Molecular Biology, 2010, 73(3): 283-292.
[34]   WADA S, HAYASHIDA Y, IZUMI M, KURUSU T, HANAMATA S, KANNO K, KOJIMA S, YAMAYA T, KUCHITSU K, MAKINO A, ISHIDA H. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant physiology, 2015, 168(1): 60-73.
[35]   KURUSU T, KOYANO T, HANAMATA S, KUBO T, NOGUCHI Y, YAGI C, NAGATA N, YAMAMOTO T, OHNISHI T, OKAZAKI Y, KITAHATA N, ANDO D, ISHIKAWA M, WADA S, MIYAO A, HIROCHIKA H, SHIMADA H, MAKINO A, SAITO K, ISHIDA H, KINOSHITA T, KURATA N, KUCHITSU K. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy, 2014, 10(5): 878-888.
[36]   LI Z K, PINSON S R, STANSEL J W, PATERSON A H.      Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Molecular Breeding, 1998, 4: 419-426.
[37]   YUE B, XUE W Y, LUO L J, XING Y Z. QTL Analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genetica Sinica, 2006, 33: 824-832.
[38]   ZHU Y, CHANG L, TANG L, JIANG H, ZHANG W, CAO W. Modelling leaf shape dynamics in rice. Njas Wageningen Journal of Life Sciences, 2009, 57(1): 73-81.
[39]   Dai G J, Cheng S H, Hua Z T, Zhang M L, Jiang H B, Feng Y, Shen X H, Su Y A, He N, Ma Z B, Ma X Q, Hou S G, Wang Y R. Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (oryza sativa. L.) at different nitrogen fertilizer levels. Genetics and Molecular Research, 2015, 14(3): 10404-10414
[1] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[2] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[3] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[4] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[5] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[6] ShuLei GUO,XiaoMin LU,JianShuang QI,LiangMing WEI,Xin ZHANG,XiaoHua HAN,RunQing YUE,ZhenHua WANG,ShuangGui TIE,YanHui CHEN. Explore Regulatory Genes Related to Maize Leaf Morphogenesis Using RNA-Seq [J]. Scientia Agricultura Sinica, 2020, 53(1): 1-17.
[7] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[8] ZHANG XiaoQiong,GUO Jian,DAI ShuTao,REN Yuan,LI FengYan,LIU JingBao,LI YongXiang,ZHANG DengFeng,SHI YunSu,SONG YanChun,LI Yu,WANG TianYu,ZOU HuaWen,LI ChunHui. Phenotypic Variation and Genome-wide Association Analysis of Root Architecture at Maize Flowering Stage [J]. Scientia Agricultura Sinica, 2019, 52(14): 2391-2405.
[9] SHI DaKun, YAO TianLong, LIU NanNan, DENG Min, DUAN HaiYang, WANG LuLin, WAN Jiong, GAO JiongHao, XIE HuiLing, TANG JiHua, ZHANG XueHai. Genome-Wide Association Study of Chlorophyll Content in Maize [J]. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857.
[10] XIE Jia, ZHANG XiaoBo, TAO YiRan, XIONG YuZhen, ZHOU Qian, SUN Ying, YANG ZhengLin, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Shorten Panicle and Seed Mutant sps1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1617-1626.
[11] SHEN ManMan, QU Liang, DOU TaoCun, MA Meng, GUO Jun, LU Jian, HU YuPing, LI YongFeng, WANG KeHua. Genome-Wide Association of Spleen Weight in Layer Chicken [J]. Scientia Agricultura Sinica, 2018, 51(6): 1213-1222.
[12] LIU Kun, ZHANG XueHai, SUN GaoYang, YAN PengShuai, GUO HaiPing, CHEN SiYuan, XUE YaDong, GUO ZhanYong, XIE HuiLing, TANG JiHua, LI WeiHua. Genome-Wide Association Studies of Plant Type Traits in Maize [J]. Scientia Agricultura Sinica, 2018, 51(5): 821-834.
[13] WANG BeiFang, CHEN YuYu, ZHANG YingXin, LIU QunEn, SUN Bin, XIANG XiaoJiao, CAO YongRun, CHENG ShiHua, CAO LiYong. Identification and Fine Mapping of an Early Senescent Leaf Mutant es5 in Oryza sativa L. [J]. Scientia Agricultura Sinica, 2018, 51(4): 613-625.
[14] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[15] YU YanFang, LIU Xi, TIAN YunLu, LIU ShiJia, CHEN LiangMing, ZHU JianPing, WANG YunLong, JIANG Ling, ZHANG WenWei, WANG YiHua, WAN JianMin. Phenotypic Analysis and Gene Mapping of a Floury and Shrunken Endosperm Mutant fse3 in Rice [J]. Scientia Agricultura Sinica, 2018, 51(11): 2023-2037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!