Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (9): 1655-1665.doi: 10.3864/j.issn.0578-1752.2017.09.011

• HORTICULTURE • Previous Articles     Next Articles

Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data

XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2016-09-29 Online:2017-05-01 Published:2017-05-01

Abstract: 【Objective】 A method was built to assemble complete chloroplast (cp) genome of Vitis and analyze its characteristics with Vitis vinifera cv. Cabernet Sauvignon, which will provide a methodological guidance for evolution and phylogenetic analysis of vitis in the future.【Method】Total genomic DNA was extracted from young leaves of Cabernet Sauvignon using plant genomic DNA kit. The small fragments (350 bp) of DNA libraries were constructed according to the manufacturer’s manual for the Illumina HiSeq PE150, and the sequencing depth was 10 fold. Grape cp reads were extracted by BLASTN software according to cp genome sequence of Arabidopsis thaliana (NC000932) and Pinot Noir (DQ424856). SOAPdenovo 2.04 assembled the extracted cp reads into complete chloroplast genome of Cabernet Sauvignon. Then its basic characteristics were analyzed using some bioinformatic softwares. 【Result】 This research obtained total of 5.2 G raw data after high-throughput sequencing. Among them, 0.42 G clean data of grape cp reads were extracted, and it accounted for about 8%. These extracted grape cp reads assembled the complete cp genome successfully. The characteristic analysis of grape cp genome showed that it was a circular molecule of 160 676 bp in length with a typical quadripartite structure, including a pair of inverted repeats (IRA and IRB) of 26 235 bp that were separated by large and small single copy regions (LSC and SSC) of 89 134 bp and 19 072 bp, respectively. A total of 154 predicted genes, including 99 protein-coding genes, 47 tRNA genes and 8 rRNA genes were identified. And the GC content of cp genome was 37.43%. Furthermore, the cp genome of Cabernet Sauvignon contained 37 tandem repeat sequences and 53 dispersed repeats. The length of most tandem repeat sequences was 11-42 bp. They accounted for 0.83% of whole cp genome, and the dispersed repeats accounted for 5.33%. Additionally, fifty short simple repeats (SSRs) loci of cp genome were detected. And most SSR loci were composed of A or T contributing to an obvious bias in base composition. Distribution of cp SSRs was non-uniform because the regions of LSC, SSC, and IR were located by 39, 7, and 4 SSRs, respectively. The codon usage of protein-coding genes was biased to use A/T bases. And among these codons, leucine (L) and cysteine (C) were the most and least used amino acids, respectively. The phylogenetic analysis showed that Cabernet Sauvignon had a closer genetic relationship with Pinot Noir, V. aestivalis and V. rotundifolia.【Conclusion】Based on high-throughput sequencing, the complete cp genome of Cabernet Sauvignon was obtained successfully. Cp and cpDNA were not required to isolate and extract in this method which shortened the experiment time, reduced the labor intensity and improved the feasibility. The subsequent characteristic analysis showed that gene structure, gene order, GC content and codon usage were identical with typical angiosperm. This research provided perfect and detailed data for the study of cp genome of Vitis vinifera, which also supplemented many deficiencies of characteristic analysis of cp genome of Vitis, such as repeat sequences, codon bias and SSRs.

Key words: cabernet sauvignon, chloroplast genome, high-throughput sequencing, characteristic analysis, phylogenetic analysis

  [1] 邢少辰, Liu C J. 叶绿体基因组研究进展. 生物化学与生物物理进展, 2008, 35(1): 21-28.
  Xing S C, Liu C J. Progress in chloroplast genome analysis. Progress in Biochemistry and Biophysics, 2008, 35(1): 21-28. (in Chinese)
  [2] 王玲, 董文攀, 周世良. 被子植物叶绿体基因组的结构变异研究进展. 西北植物学报, 2012, 32(6): 1282-1288.
  Wang L, Dong W P, Zhou S L. Structural mutations and reorganizations in chloroplast genomes of flowering plants. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6): 1282-1288. (in Chinese)
  [3] MCCAULEY D E, RAVEILL J A. The spatial distribution of chloroplast DNA and allozyme polymorphisms within a population of Silene alba (Caryophyllaceae). American Journal of Botany, 1996, 83(6): 727-731.
  [4] SMALL R L, CRONN R C, WENDEL J F. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany, 2004, 17(2): 145-170.
  [5] Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M. The complete nucleotide sequence of the tobacco chloroplast genome. Plant Molecular Biology Reporter, 1986, 4(3): 111-148.
  [6] Ohyama, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 1986, 322(6079): 572-574.
  [7] Nie X J, Lü S Z, Zhang Y X, Du X H, Wang L, Biradar S S, Tan X F, Wan F H, Song W N. Complete chloroplast genome sequence of a major invasive species, Crofton Weed (Ageratina adenophora). Plos One, 2012, 7(5): e36869.
  [8] Bortiri E, Colemanderr D, Lazo G R, Anderson O D, Gu Y Q. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes. Bmc Ressearch Notes, 2008, 1(1): 1-3.
  [9] Liu J, Qi Z C, Zhao Y P, Fu C X, Xiang Q Y. Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales-Influences of gene partitions and taxon sampling. Molecular Phylogenetics and Evolution, 2012, 64(3): 545-562.
  [10] Mardanov A V, Ravin N V, Kuznetsov B B, Samigullin T H, Antonov A S, Kolganova T V, Skyabin K G. Complete sequence of the Duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. Journal of Molecular Evolution, 2008, 66 (6): 555-564.
  [11] Wu F H, Chan M T, Liao D C, Hsu C T, Lee Y W, Daniell H, Duvall M R, Lin C S. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. Bmc Plant Biology, 2010, 10(1): 1-12.
  [12] 冯坤. 棉属十个叶绿体基因组分析及其系统发育研究[D]. 安阳: 中国农业科学院, 2013.
  Feng K. Chloroplast genome sequences of ten species of Gossypium: structural organization and phylogenetic analyses[D]. Anyang: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
  [13] Qian J, Song J Y, Gao H H, Zhu Y J, Xu J, Pang X H, Yao H, Sun C, Li X E, Li C Y, Liu J Y, Xu H B, Chen S L. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLos One, 2013, 8(2): e57607.
  [14] Zhao Y B, Yin J L, Guo H Y, Zhang Y Y, Xiao W, Sun C, Wu J Y, Qu X B, Yu J, Wang X M, Xiao J F. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Frontiers in Plant Science, 2014, 5: 1-12.
  [15] Curci P L, Paola D D, Danzi D, Vendramin G G, Sonnante G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLos One, 2015, 10(3): e0120589.
  [16] 王志润. 葡萄部分品质因子定性定量研究[D]. 扬州: 扬州大学, 2014.
  Wang Z R. Qualitative and quantitative research on some quality factor characteristics of grapes[D]. Yangzhou: Yangzhou University, 2014. (in Chinese)
  [17] 李朝銮. 中国植物志(葡萄科). 北京: 科学出版社, 1998.
  LI C L. Flora of China (Vitaceae). Beijing: Science Press, 1998. (in Chinese)
  [18] 罗明明. 葡萄品种亲缘关系及分类的RAPD分析[D]. 雅安: 四川农业大学, 2005.
  Luo M M. Studies on the application of RAPD molecular markers to the classification of grape varieties[D]. Ya’an: Sichuan Agricultural University, 2005. (in Chinese)
  [19] 张旭彤. 中国野生葡萄种质资源的亲缘关系研究[D]. 杨凌: 西北农林科技大学, 2012.
  Zhang X T. A genetic research on the relationship of Chinese grape germplasm[D]. Yangling: North West Agriculture and Forestry University, 2012. (in Chinese)
  [20] 王蕾, 张娟, 刘林德, 张莉, 魏丽娟, 胡德昌, 邓世斌. 利用ISSR和叶绿体trnL-trnF序列变异研究葡萄种质资源的遗传多样性和系统发育关系. 鲁东大学学报, 2015(1): 32-38.
  Wang L, Zhang J, Liu L D, Zhang L, Wei L J, Hu D C, Deng S B. Genetic diversity and phylogenetic relationships of grape germplasm (Vitis vinifera): evidence from nuclear ISSR markers and chloroplast trnL-trnF sequence variations. Journal of Ludong University, 2015(1): 32-38. (in Chinese)
  [21] This P, Lacombe T, Thomas M R. Historical origins and genetic diversity of wine grapes. Trends in Genetics, 2006, 22(22): 511-519.
  [22] 张永辉, 刘崇怀, 樊秀彩, 张颖, 孙海生, 彭斌, 姜建福. ISSR标记在中国野生葡萄分类中的应用. 果树学报, 2011, 28(3): 406 -412.
  Zhang Y H, Liu C H, Fan X C, Zhang Y, Sun H S, Peng B, Jiang J F. Application of ISSR markers in taxonomy of Chinese wild grapes. Journal of Fruit Science, 2011, 28(3): 406-412. (in Chinese)
  [23] Huang H, Shi C, Liu Y, Mao S Y, Gao L Z. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. Bmc Evolutionary Biology, 2014, 14(26): 4302-4315.
  [24] Jansen R K, Kaittanis C, Saski C, Lee S B, Tomkins J, Alverson A J, Daniell H. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. Bmc Evolutionary Biology, 2006, 6(1589): 32.
  [25] Ingrouille M J, Fls M W C, Fls M F F, Bowman D, Bank M V D, Bruijn A D E. Systematics of Vitaceae from the viewpoint of plastid rbcL DNA sequence data. Botanical Journal of the Linnean Society, 2002, 138(4): 421-432.
  [26] Tröndle D, Schröder S, Kassemeyer H H, Kiefer C, Koch M A, Nick P. Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. American Journal of Botany, 2010, 97(7): 1168-1178.
  [27] Zecca G, Abbott J R, Sun W B, Spada A, Sala F, Grassi F. The timing and the mode of evolution of wild grapes (Vitis). Molecular Phylogenetics and Evolution, 2012, 62(2): 736-747.
  [28] 吴俊辉, 舒煦, 李朝銮. 中国葡萄属植物叶绿体DNA的提取、纯化及分子量测定. 植物分类与资源学报, 1994(2): 178-186.
  Wu J H, Shu X, Li C L. Isolation, purification and measure of molecular weight of cpDNA from Vitis species in Chinese. Acta Botanica Yunnanica, 1994(2): 178-186. (in Chinese)
  [29] Luo R, Liu B H, Xie Y L, Li Z Y, Huang W H, Yuan J Y, He G Z, Chen Y X, Pan Q, Liu Y J, Tang J B, Wu G X, Zhang H, Shi Y J, Liu Y, Yu C, Wang B, Lu Y, Han C L, Cheung D W, Yiu S M, Peng S L, Zhu X Q, Liu G M, Liao X K, Li Y R, Yang H M, Wang J, Lam T W, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1(1): 1-6.
  [30] Wyman S K, Jansen R K, Boore J L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 2004, 20(17): 3252-3255.
  [31] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403-410.
  [32] Saha S, Bridges S, Magbanua Z V, Peterson D G. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Research, 2008, 36(7): 2284-94.
  [33] Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2): 573-580.
  [34] Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics, 2007, 52(5/6): 267-274.
  [35] Thiel T, Michanlek W, Warshney R K, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2010, 106(3): 411-422.
  [36] Tamura K, Stecher G, Peterson D, Filipski A. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
  [37] Savolainen V, Fay M F, Albach D C, Backlund A, Bank M, Cameron K M, Johnson S A, Lledó M D, Pintaud J C, Powell M, Sheahan M C, Soltis D E, Soltis P S, Weston P, Whitton W M, Wurdack K J, Chase M W. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bulletin, 2000, 55(2): 257-309.
  [38] Savolainen V, Chase M W, Hoor S B, Morton C M, Soltis D E, Bayer C, Fay M F, Debruijn A Y, Sullivan S, Qiu Y L. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Systematic biology, 2000, 49(2): 306-362.
  [39] Soltis D E, Soltis P S, Chase M W, Mort M E, Albach D C, Zanis M, Savolainen V, Hahn W H, Hoot S B, Fay M F, Axtell M, Swensen S M, Prince L M, Kress W J, Nixon K C, Farris J S. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB se’quences. Botanical Journal of the Linnean Society, 2000, 133(4): 381-461.
  [40] Soltis D E, Senters A E, Zanis M J, Kim S, Thompson J D, Soltis P S, Ronse D E, Craene L P, Endress P K, Farris J S. Gunnerales are sister to other core eudicots: Implications for the evolution of pentamery. American Journal of Botany, 2003, 90(3): 461-470.
  [41] Cronquist A. An Integrated System of classification of Flowering Plants. Boston Massachusetts: Columbia University Press, 1981.
  [42] Tapg. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG Ⅲ. Botanical Journal of the Linnean Society, 2016, 161(2): 105-121.
  [43] Wicke S, Schneeweiss G M, Depamphilis C W, Kai F M, Quandt D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Molecular Biology, 2011, 76(3/5): 273-297.
  [44] 金桂花, 陈斯云, 伊廷双, 张书东. 苹果叶绿体基因组特征分析. 植物分类与资源学报, 2014, 36(4): 468-484.
  Jin G H, Chen S Y, Yi T S, Zhang S D. Characterization of the complete chloroplast genome of apple (Malus ´ domestica Rosaceae). Plant Diversity and Resources, 2014, 36(4): 468-484. (in Chinese)
  [45] Hasebe M, Lwatsuki K. Chloroplast DNA from Adiantum capillus-veneris L., a fern species (Adiantaceae); clone bank, physical map and unusual gene localization in comparison with angiosperm chloroplast DNA. Current Genetics, 1990, 17(4): 359-364.
  [46] Ohta N, Matsuzaki M, Misumi O, Miyagishima S Y, Nozaki H, Tanaka K, Tadasu S I, Kohara Y, Kuroiwa T. Complete Sequence and Analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. Dna Research, 2003, 10(2): 67-77.
  [47] Ku C, Chung W C, Chen L L, Kuo C H. The complete plastid genome sequence of Madagascar Periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in Asterids. Plos One, 2013, 8(6): e68518.
  [48] Nashima K, Terakami S, Nishitani C, Kunihisa M, Shoda M, Takeuchi M, Urasaki N, Tarora K, Yamamoto T, Katayama H. Complete chloroplast genome sequence of pineapple (Ananas comosus). Tress Genetics and Genomes, 2015, 11(3): 1-11.
  [49] 林张翔. 稗草叶绿体基因组测序及其分子标记开发与利用[D]. 杭州: 浙江大学, 2015.
  Lin Z X. Echinochlon chloroplast genome sequencing and development of molecular markers[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
  [50] Lin Z X, Wang Y Y, Fu F, Ye C Y, Fan L J. Complete chloroplast genome of Dongxiang wild rice and its application in phylogenetic analysis. Journal of Zhejiang University, 2014, 40(4): 397-403.
[1] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[2] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[3] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[4] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[5] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[6] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[7] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[8] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[9] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[10] LIU HaiYang, WANG Wei, ZHANG RenFu, RAXIDA ·ABDURAHMAN, YAO Ju. Fungal Community Structure of Cotton-Field Soil Under Different Incidences of Cotton Verticillium Wilt [J]. Scientia Agricultura Sinica, 2019, 52(3): 455-465.
[11] LI WenGuang,YANG XiaoXiao,HUANG ChunGuo,XUE NaiWen,XIA Qing,LIU XiaoLi,ZHANG XiaoQi,YANG Si,YANG ZhenPing,GAO ZhiQiang. Effects of Rapeseed Green Manure on Soil Fertility and Bacterial Community in Dryland Wheat Field [J]. Scientia Agricultura Sinica, 2019, 52(15): 2664-2677.
[12] DAI HongCui,ZHANG Hui,XUE YanFang,GAO YingBo,QIAN Xin,ZHAO HaiJun,CHENG Hao,LI ZongXin,LIU KaiChang. Response of Fungal Community and Function to Different Tillage and Straw Returning Methods [J]. Scientia Agricultura Sinica, 2019, 52(13): 2280-2294.
[13] HOU JianWei,XING CunFang,LU ZhiHong,CHEN Fen,YU Gao. Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou [J]. Scientia Agricultura Sinica, 2018, 51(23): 4485-4495.
[14] YANG YaDong, WANG ZhiMin, ZENG ZhaoHai. Effects of Long-Term Different Fertilization and Irrigation Managements on Soil Bacterial Abundance, Diversity and Composition [J]. Scientia Agricultura Sinica, 2018, 51(2): 290-301.
[15] GAO ShengChao, GUAN DaWei, MA MingChao, ZHANG Wei, LI Jun, SHEN DeLong. Effects of Fertilization on Bacterial Community Under the Condition of Continuous Soybean Monoculture in Black Soil in Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1271-1281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!