Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (8): 1476-1485.doi: 10.3864/j.issn.0578-1752.2017.08.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of the Inherent Soil Productivity on High, Stable and Sustainable Yield of Grain and Oil Crops in Yellow Soil Region

HUANG XingCheng1,2, SHI XiaoJun3, LI Yu1,2, ZHANG YaRong1,2, LIU YanLing1,2ZHANG WenAn1,2, JIANG Taiming2,4   

  1. 1Guizhou Institute of Soil and Fertilizer, Guiyang 550006; 2Scientific Observing and Experimental Station of Arable Land Conservation and Agricultural Environment (Guizhou), Ministry of Agriculture, Guiyang 550006; 3College of Resources and Environmental, Southwest University, Chongqing 400716; 4Guizhou Academy of Agricultural Sciences, Guiyang 550006
  • Received:2016-10-24 Online:2017-04-16 Published:2017-04-16

Abstract: 【Objective】Yellow soil is an important zonal soil in China. High, stable and sustainable yield of grain and oil crops are fundamental to food security, economic development and people's livelihood for yellow soil region. This paper studied the characteristics of inherent soil productivity for grain and oil crops in yellow soil region in order to evaluate the effect of inherent soil productivity on high, stable and sustainable yield of grain and oil crops. The results of this study will provide a theoretical basis for cultivating land conservation and producing green crops in yellow soil region. 【Method】The assessment was conducted based on data-set derived from National Soil Test and Fertilizer Recommendation projects during 2006 to 2013 in yellow soil region. Yields of unfertilized control (CK) and NPK fertilization (N2P2K2) treatments in 3 515 on-farm trials (434 potato trials, 525 rapeseed trials, 1 318 maize trials, and 1 238 rice trials) were surveyed. Characteristics of inherent soil productivity and its contribution rate to fertilization yield under on-farm conditions were assessed by using a plant-based agronomic approach. The effects of inherent soil productivity on fertilization yield and yield gap were also assessed by using linear fitting and boundary line analysis. Meanwhile, the effect of stable indexes and sustainable indexes of grain and oil crops under different inherent productivities were also assessed. 【Result】The average yield based on inherent soil productivity of potato, rapeseed, maize and rice were 10.8, 1.13, 4.57 and 5.73 Mg·hm-2, and the average contribution rates of inherent soil productivity were 50.8%, 49.0%, 59.0% and 70.8%, respectively. It was found that the contribution rate of inherent soil productivity was increased with improvement of inherent soil productivity. There was a significant and positive correlation between fertilization yield and inherent soil productivity, R2 of linear fitting with fertilization yield and inherent soil productivity of potato, rapeseed, maize and rice were 0.476, 0.284, 0.382 and 0.366 (P<0.001), respectively. Boundary line analysis showed that the attainable yield of potato, rapeseed, maize and rice were 42.8, 4.07, 11.8 and 12.4 Mg·hm-2, respectively. Meanwhile, it found that stability and sustainable of grain and oil crops yield were increased with improvement of inherent soil productivity. 【Conclusion】It was concluded that improving inherent soil productivity of farmland can decrease yield gap while promote high, stable and sustainable yield of grain and oil crops in yellow soil regions.

Key words: yellow soil, inherent soil productivity, boundary line analysis, yield gap, stability index, sustainable yield index

[1]    Tong C L, Hall C A S, Wang H Q. Land use change in rice, wheat and maize production in China (1961-1998). Agriculture Ecosystems and Environment, 2003, 95(2/3): 523-536.
[2]    Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1): 3-8.
[3]    Rondanini D P, Gomez N V, Agosti M B, Miralles D J. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy, 2012, 37(1): 56-65.
[4]    Li Y X, Zhang W F, Ma L, Wu L, Shen J B, Davies W J , Oenema O, Zhang F S, Dou Z X. An analysis of China's grain production: Looking back and looking forward. Food & Energy Security, 2014, 3(1): 19-32.
[5]    Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
[6]    朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2):259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese)
[7]    刘彦随, 王介勇, 郭丽英. 中国粮食生产与耕地变化的时空动态. 中国农业科学, 2009, 42(12): 4269-4274.
Liu Y S, Wang J Y, Guo L Y. The spatial-temporal changes of grain production and arable land in China. Scientia Agricultura Sinica, 2009, 42(12): 4269-4274. (in Chinese)
[8]    Fan M S, Christie P, Zhang W F, Zhang F S. Crop productivity, fertilizer use, and soil quality in China//Lal R, Stewart B A. Advances in Soil Science: Food Security and Soil Quality. USA: CRC Press, 2010: 87-107.
[9]    张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[10]   林治安, 赵秉强, 袁亮, Hwat Bing-So. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819.
Lin Z A, Zhao B Q, Yuan L, Hwat B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
[11]   王艳群, 彭正萍, 薛世川, 杨云马, 周亚鹏, 赵立宾. 过量施肥对设施农田土壤生态环境的影响. 农业环境科学学报, 2005, 24(增刊): 81-84.
Wang Y Q, Peng Z P, Xue S C, Yang Y M, Zhou Y P, Zhao L B. Effect of excessive fertilization on soil ecological environment in the facility farmland. Journal of Agro-Environment Science, 2005, 24(s1): 81-84. (in Chinese)
[12]   Liu Q P, Guo Y L, Giesy J P. Assessment on ecological safety of farmland fertilization of China. Advanced Materials Research, 2014, 962-965: 2170-2174.
[13]   高祥照, 马文奇, 杜森, 张福锁, 毛达如. 我国施肥中存在问题的分析. 土壤通报, 2001, 32(6): 258-261.
Gao X Z, Ma W Q, Du S, Zhang F S, Mao D R. Current status and problems of fertilization in China. Chinese Journal of Soil Science, 2001, 32(6): 258-261. (in Chinese)
[14]   李忠芳, 徐明岗, 张会民, 张文菊, 高静. 长期施肥下中国主要粮食作物产量的变化. 中国农业科学, 2009, 42(7): 2407-2414.
Li Z F, Xu M G, Zhang H M, Zhang W J, Gao J. Grain yield trends of different food crops under long-term fertilization in China. Scientia Agricultura Sinica, 2009, 42(7): 2407-2414. (in Chinese)
[15]   曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012, 45(14): 2886-2894.
Zeng X M, Han B J, Xu F S, Huang J L, Cai H M, Shi L. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. (in Chinese)
[16]   Fan M S, Lal R, Cao J, Qiao L, Su Y S, Jiang R F, Zhang F S. Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. Plos One, 2013, 8(9): e74617.
[17]   李忠芳, 张水清, 李慧, 孙楠, 逄焕成, 娄翼来, 徐明岗. 长期施肥下我国水稻土基础地力变化趋势. 植物营养与肥料学报, 2015, 21(6): 1394-1402.
Li Z F, Zhang S Q, Li H, Sun N, Pang H C, Lou Y L, Xu M G. Trends of basic soil productivity in paddy soil under long-term fertilization in China. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1394-1402. (in Chinese)
[18]   梁涛, 陈轩敬, 赵亚南, 黄兴成, 李鸿, 石孝均, 张跃强. 四川盆地水稻产量对基础地力与施肥的响应. 中国农业科学, 2015, 48(23): 4759-4768.
Liang T, Chen X J, Zhao Y N, Huang X C, Li H, Shi X J, Zhang Y Q. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan basin. Scientia Agricultura Sinica, 2015, 48(23): 4759-4768. (in Chinese)
[19]   中华人民共和国农业部. 测土配方施肥技术规范(试行). 2006. [2016-12-16].http://www.natesc.org.cn/Html/2006_06_06/52871_53741_2006_06_06_75460.html.
Ministry of Agriculture of the Peple’s Republic of China. Technical specification of soil testing and fertilizer recommendation(trial). 2006.[2016-12-16].http://www.natesc.org.cn/Html/2006_06_06/52871_53741_2006_06_06_75460.html. (in Chinese)
[20]   Webb R A. Use of the boundary line in the analysis of biological data. Journal of Horticultural Science, 47(3): 309-319.
[21]   Schnug E, Heym J, Achwan F. Establishing critical values for soil and plant analysis by means of the boundary line development system (bolides). Communications in Soil Science and Plant Analysis, 2008, 27(13): 2739-2748.
[22]   Fermont A M, Asten P J A, Tittonell P, Wijk M T, Giller K E. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Research, 2009, 112(1): 24-36.
[23]   Wang N, Jassogne L, Asten P J A, Mukasa D, Wanyama I, Kagezi G, Giller K E. Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy, 2015, 63(63): 1-11.
[24]   Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture Ecosystems and Environment, 2009, 129(1/3): 344-348.
[25]   贡付飞, 查燕, 武雪萍, 黄绍敏, 徐明岗, 张会民, 刘海龙, 姜志伟, 王小彬, 蔡典雄. 长期不同施肥措施下潮土冬小麦农田基础地力演变分析. 农业工程学报, 2013, 29(12): 120-129.
Gong F F, Zha Y, Wu X P, Huang S M, Xu M G, Zhang H M, Liu H L, Jiang Z W, Wang X B, Cai D X. Analysis on basic soil productivity change of winter wheat in fluvo-aquic soil under long-term fertilization. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12): 120-129. (in Chinese)
[26]   鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平. 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015, 52(3): 597-606.
Lu Y H, Liao Y L, Zhou X, Nie J, Xie J, Yang Z P. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system. Acta Pedologica Sinica, 2015, 52(3): 597-606. (in Chinese)
[27]   乔磊, 江荣风, 张福锁, 范明生. 土壤基础地力对水稻体系的增产与稳产作用研究. 中国科技论文, 2016, 11(9): 1031-1034.
Qiao L, Jiang R F, Zhang F S, Fan M S. Improving inherent soil productivity enhances yield and resilience of rice farming systems. China Sciencepaper, 2016, 11(9): 1031-1034. (in Chinese)
[28]   夏圣益. 土壤基础地力, 施肥水平与农作物产量的关系. 上海农业科技, 1998(1): 6-8.
Xia S Y. Relation of soil fertility with applying fertilizer quantity and crop yields. Shanghai Agricultural Science and Technology, 1998(1): 6-8. (in Chinese)
[29]   汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率及其影响因素的统计分析. 农业环境科学学报, 2008, 27(4): 1283-1289.
Tang Y H, Huang Y. Statistical analysis of the percentage of soil fertility contribution to grain crop yield and driving factors in mainland China. Journal of Agro-Environment Science, 2008, 27(4): 1283-1289. (in Chinese)
[30]   黄兴成, 颜家均, 刘洪斌, 陈心佩, 宋美霞. 低山丘陵区农田土壤有机质预测性制图. 西南师范大学学报(自然科学版), 2013, 38(5): 142-149.
Huang X C, Yan J J, Liu H B, Chen X P, Song M X. On predictive mapping of farmland soil organic matter in hilly areas. Journal of Southwest China Normal University(Natural Science Edition), 2013, 38(5): 142-149. (in Chinese)
[31]   李忠芳. 长期施肥下我国典型农田作物产量演变特征和机制[D]. 北京: 中国农业科学院, 2009.
Li Z F. Characteristics and its mechanism of grain yield in typical cropland under long-term fertilization in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[32]   王立德, 廖红, 王秀荣, 严小龙. 植物根毛的发生、发育及养分吸收. 植物学报, 2004, 21(6): 649-659.
Wang L D, Liao H, Wang X R, Yan X L. Root hair initiation and development and nutrient uptake in plants. Chinese Bulletin of Botany, 2004, 21(6): 649- 659. (in Chinese)
[33]   汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征. 农业环境科学学报, 2009, 28(5): 1070-1078.
Tang Y H, Huang Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in mainland China. Journal of Agro-Environment Science, 2009, 28(5): 1070-1078. (in Chinese)
[34]   侯光良, 刘允芬. 我国气候生产潜力及其分区. 资源科学, 1985(3): 52-59.
Hou G L, Liu Y F. Climatic production potential and its division in China. Resources Science, 1985(3): 52-59. (in Chinese)
[35]   刘珍环, 杨鹏, 吴文斌, 李正国, 游良志. 近30年中国农作物种植结构时空变化分析. 地理学报, 2016, 71(5): 840-851.
Liu Z H, Yang P, Wu W B, Li Z G, You L Z. Spatio-temporal changes in Chinese crop patterns over the past three decades. Acta Geographica Sinica, 2016, 71(5): 840-851. (in Chinese)
[36]   丁明军, 陈倩, 辛良杰, 李兰晖, 李秀彬. 1999-2013年中国耕地复种指数的时空演变格局. 地理学报, 2015, 70(7): 1080-1090.
Ding M J, Chen Q, Xin L J, Li L H, Li X B. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999-2013. Acta Geographica Sinica, 2015, 70(7): 1080-1090. (in Chinese)
[37]   姚亚庆. 1950-2015年我国农业气象灾害时空特征研究[D]. 杨凌: 西北农林科技大学, 2016.
Yao Y Q. The Spatial and temporal characteristics of agro- meteorological disasters during 1950-2015 in China[D]. Yangling: Northwest Agriculture and Forestry University, 2016. (in Chinese)
[38]   Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A. Closing yield gaps through nutrient and water management. Nature, 2012, 490(7419): 254-260.
[39]   Zhang W F, Cao G X, Li X L, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 537(7622): 671-674.
[40]   曹文藻. 黄壤改良. 贵阳:贵州人民出版社, 1981.
Cao W Z. Yellow Soil Improvement. Guiyang: Guizhou People's Publishing House, 1981. (in Chinese)
[41]   胡岗, 秦松, 范成五, 赵欢, 张邦喜, 严莲英. 3种不同管理措施黄壤坡耕地的有机碳与氮养分. 西南农业学报, 2015, 28(6): 2630-2636.
Hu G, Qin S, Fan C W, Zhao H, Zhang B X, Yan L Y. Organic carbon and nitrogen nutrients in yellow soil of slope cropland under three different management measures. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2630-2636. (in Chinese)
[42]   张文安, 芶久兰, 李剑, 肖厚军, 秦松. 黄壤旱地长期不同耕作与施肥对玉米产量及施肥效益的影响. 贵州农业科学, 2008, 36(2):105-107.
Zhang W A, Gou J L, Li J, Xiao H J, Qin S. Effects of long-term different farming and fertilizer methods on maize yield and fertilizer efficiency in the upland field with yellow soil. Guizhou Agricultural Sciences,2008, 36(2): 105-107. (in Chinese)
[43]   肖厚军, 王正银, 何佳芳, 苟久兰. 磷石膏改良强酸性黄壤的效应研究. 水土保持学报, 2008, 22(6): 62-66.
Xiao H J, Wang Z Y, He J F, Gou J L. Effects of phosphogypsum on nutrient balance of broomcorn grown in strongly acidic yellow soil. Journal of Soil and Water Conservation, 2008, 22(6):62-66. (in Chinese)
[1] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[2] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[3] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[4] LI GuanMo,ZHANG WenJu,QU XiaoLin,QIAO Lei,HUANG YaPing,XU Hu,XU MingGang. Evolution Characteristics and Influencing Factors on Inherent Soil Productivity Across Dryland [J]. Scientia Agricultura Sinica, 2021, 54(19): 4132-4142.
[5] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[6] YuXian CAO,JianQiang ZHU,Jun HOU. Yield Gap of Ratoon Rice and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(4): 707-719.
[7] YANG Zhe,YU ShengNan,GAO JuLin,TIAN Tian,SUN JiYing,WEI ShuLi,HU ShuPing,LI RongFa,LI CongFeng,WANG ZhiGang. Quantitative Evaluation of the Contribution of Main Management Factors to Grain Yield of Spring Maize in North China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3024-3035.
[8] CAO YuJun,YAO FanYun,WANG Dan,LÜ YanJie,LIU XiaoDan,WANG LiChun,WANG YongJun,LI CongFeng. Effects of Different Agronomy Factors on Yield Gap and Nitrogen Efficiency Gap of Spring Maize Under Rain-Fed Conditions [J]. Scientia Agricultura Sinica, 2020, 53(15): 3036-3047.
[9] CHENG YongYi, LI ZhongYi, BAI YingYan, LIU Li . Acidification Characteristics of Purple Soil, Yellow Soil and Latosol with Electrodialysis Method [J]. Scientia Agricultura Sinica, 2018, 51(7): 1325-1333.
[10] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Yield Gap of Alfalfa, Ryegrass and Oat Grass and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2018, 51(3): 507-522.
[11] HOU JianWei,XING CunFang,LU ZhiHong,CHEN Fen,YU Gao. Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou [J]. Scientia Agricultura Sinica, 2018, 51(23): 4485-4495.
[12] LIANG Tao, LIAO DunXiu, CHEN XinPing, WANG Shuai, FU DengWei, CHEN XuanJing, SHI XiaoJun. Effect of Paddy Inherent Soil Productivity on Nutrient Utilization Efficiency of Rice in Chongqing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3106-3116.
[13] LI Hui, DAI XinJun, GAO ZhiQiang. Stability Characteristics of Soil Water-Stable Aggregates Under Different Tillage Treatments in Summer Fallow on the Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(13): 2524-2534.
[14] GONG FangFang, FAN WeiGuo. Effects of Exogenous Citric Acids on Nutrient Activation of Calcareous Yellow Soil and Promotion effects of Nutrient Absorption and Growth of Rosa roxburghii Seedlings [J]. Scientia Agricultura Sinica, 2018, 51(11): 2164-2177.
[15] XU ChunLi, XIE Jun, WANG Ke, LI DanPing, CHEN XuanJing, ZHANG YueQiang, CHEN XinPing, SHI XiaoJun. The Response of Maize Yield to Inherent Soil Productivity and Fertilizer in the Southwest [J]. Scientia Agricultura Sinica, 2018, 51(1): 129-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!