Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (3): 556-563.doi: 10.3864/j.issn.0578-1752.2017.03.014

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Characteristics of Stable Carbon and Nitrogen Isotopic Ratios in Wheat Milling Fractions

LIU HongYan, GUO BoLi, WEI Shuai, JIANG Tao, ZHANG SenShen, WEI YiMin   

  1. Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193
  • Received:2016-07-01 Online:2017-02-01 Published:2017-02-01

Abstract: 【Objective】 It remains unclear for several points when identifying the geographical origin of wheat. Is there any fractionation for the stable isotopic fingerprints of milling fractions by comparing with whole wheat flour, and whether the stable isotopic fingerprints in milling fractions can be used for identifying the geographical origin of the milling fractions as well as the whole wheat flour? These problems need to be resolved. This study was conducted to reveal the characteristics and correlations of stable carbon (δ13C) and nitrogen (δ15N) isotopic ratios in different milling fractions by analyzing the difference in stable isotopic ratios among milling fractions, regions or genotypes, which could provide a theoretical and technical basis for geographical traceability of wheat and its milling fractions.【Method】 In 2014, three genotypes of wheat (Han 6172, Heng 5229 and Zhoumai 16) were grown in three regions of China which were Huixian (Henan Province), Yangling (Shaanxi Province) and Zhaoxian (Hebei Province). Three plots were conducted in each region, the typical size of plot was 10 m2, recommended local agricultural practices were adopted. Totally 27 wheat samples were collected from three regions in 2015, whole wheat flour were obtained by grinding, and flour, wheat shorts and bran were obtained by milling. δ13C and δ15N were measured for whole wheat flour and milling fractions (flour, wheat shorts and bran) by an element analysis-isotope ratio mass spectrometer. One-way analysis of variance combined with Duncan’s multiple comparison was employed to identify the significant differences among different regions, genotypes and milling fractions at isotopic levels, and Pearson correlation analysis and linear regression analysis were used to test the correlations of δ13C and δ15N among different categories of samples.【Result】Significant differences were observed among different regions in δ13C and δ15N in whole wheat flour and milling fractions, and the δ13C in wheat from three regions decreased in the following order: Huixian>Zhaoxian>Yangling. No significant difference was found between different genotypes in δ13C in whole wheat flour, bran and flour, and in δ15N in each category of wheat samples, significant differences were found in δ13C between wheat genotypes of Han 6172 and Heng 5229. Significant differences were also found in δ13C among different categories of wheat samples (P<0.05), δ13C was relatively enriched in flour and depleted in wheat shorts and bran, while no significant difference was found in δ15N among different categories of wheat samples. Significant correlations were found in δ13C and δ15N between different kinds of wheat samples (P<0.01). 【Conclusion】There were significant differences in δ13C among different wheat milling fractions, but no significant differences in δ15N among different wheat milling fractions. Significant correlations were observed between different categories of wheat samples in δ13C and δ15N. Both δ13C and δ15N of whole wheat flour and milling fractions were characterized by geographical features, which could be used for identifying the geographical origin of wheat and its milling products.

Key words: wheat, mill, flour, geographical origin, stable carbon isotope, stable nitrogen isotope

[1]    Zhao H Y, Guo B L, Wei Y M, Zhang B, Sun S M, Zhang L, Yan J H. Determining the geographic origin of wheat using multielement analysis and multivariate statistics. Journal of Agricultural and Food Chemistry, 2011, 59:4397-4402.
[2]    郑永飞, 陈江峰. 稳定同位素地球化学. 北京: 科学出版社, 2000.
ZHENG Y F, CHEN J F. Stable Isotope Geochemistry. Beijing: Science Press, 2000. (in Chinese)
[3]    王国安. 中国北方草本植物及表土有机质碳同位素组成[D]. 北京: 中国科学院地质与地球物理研究所, 2001.
WANG G A. Herbaceous plants and soil organic carbon isotope in northern China [D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2001. (in Chinese)
[4]    Brescia M A, Di Martino G, Guillou C, Reniero F, Sacco A, Serra F. Determination of the geographical origin of durum wheat semolina samples on the basis of isotopic composition. Rapid Communications in Mass Spectrometry,2002, 16: 2286-2290. (in Chinese)
[5]    KAWASAKI A, ODA H, HIRATA T. Determination of strontium isotope ratio of brown rice for estimating its provenance. Soil Science and Plant Nutrition,2002, 48(5): 635-640.
[6]   ARIYAMA K, SHINOZAKI M, KAWASAKI A. Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations. Journal of Agricultural and Food Chemistry, 2012, 60: 1628-1634.
[7]    DI PAOLA-NARANJO R D, BARONI M V, PODIO N S, RUBINSTEIN H R, FABANI M P, BADINI R G, INGA M, OSTERA H A, CAGNONI M, GALLEGOS E, GAUTIER E, PERAL-GARCIA P, HOOGEWERFF J, WUNDERLIN D A. Fingerprints for main varieties of Argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics. Journal of Agricultural and Food Chemistry,2011, 59: 7854-7865.
[8]    MARCHIONNI S, BRASCHI E, TOMMASINI S, BOLLATI A, CIFELLI F, MULINACCI N, MATTEI M, CONTICELLI S. High-precision 87Sr/86Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance. Journal of Agricultural and Food Chemistry, 2013, 61: 6822-6831.
[9]    LI G C, WU Z J, WANG Y H, DONG X C, LI B, HE W D, WANG S C, CUI J H. Identification of geographical origins of Schisandra fruits in China based on stable carbon isotope ratio analysis. European Food Research and Technology,2011, 232: 797-802.
[10]   RUMMEL S, HOELZL S, HORN P, ROSSMANN A, SCHLICHT C. The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chemistry,2010, 118: 890-900.
[11]   LI Q, CHEN L, DING Q, LIN G. The stable isotope signatures of blackcurrant (Ribes nigrum L.) in main cultivation regions of China: implications for tracing geographic origin. European Food Research and Technology,2013, 237: 109-116.
[12]   GUO B L, WEI Y M, PAN J R, LI Y. Stable C and N isotope ratio analysis for regional geographical traceability of cattle in China. Food Chemistry, 2010, 118: 915-920.
[13]   OSORIO M T, MOLONEY A P, SCHMIDT O, MONAHAN F J. Multielement isotope analysis of bovine muscle for determination of international geographical origin of meat. Journal of Agricultural and Food Chemistry, 2011, 59: 3285-3294.
[14]   CRITTENDEN R G, ANDREW A S, LEFOURNOUR M, YOUNG M D, MIDDLETON H, STOCKMANN R. Determining the geographic origin of milk in Australasia using multi-element stable isotope ratio analysis. International Dairy Journal,2007, 17: 421-428.
[15]   SCAMPICCHIO M, MIMMO T, CAPICI C, HUCK C, INNOCENTE N, DRUSCH S, CESCO S. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60: 11268-11273.
[16]   EHTESHAM E, HAYMAN A R, MCCOMB K A, VAN HALE R, FREW R D. Correlation of geographical location with stable isotope values of hydrogen and carbon of fatty acids from New Zealand milk and bulk milk powder. Journal of Agricultural and Food Chemistry, 2013, 61: 8914-8923.
[17]   TURCHINI G M, QUINN G P, JONES P L, PALMERI G, GOOLEY G. Traceablility and discrimination among differently farmed fish: A case study on Australian murray Cod. Journal of Agriculture and Food Chemistry, 2009, 57: 274-281.
[18]   郭波莉, 魏益民, 潘家荣. 同位素指纹分析技术在食品产地溯源中的应用进展. 农业工程学报, 2010, 23(3): 284-289.
GUO B L, WEI Y M, PAN J R. Progress in the application of isotopic fingerprint analysis to food origin traceability. Transactions of the CSAE, 2010, 23(3): 284-289. (in Chinese)
[19]   KORNEXL B E, WERNER T, ROßMANN A, SCHMIDT H L. Measurement of stable isotope abundances in milk and milk ingredients – a possible tool for origin assignment and quality control. Zeitschrift für Lebensmittel-Untersuchung und-Forschung, 1997, 205: 19-24.
[20]   BRANCH S, BURKE S, EVANS P, FAIRMAN B, WOLFF BRICHE C S J. A preliminary study in determining the geographical origin of wheat using isotope ratio inductively coupled plasma mass spectrometry with 13C, 15N mass spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18(18): 17-22.
[21]   LUO D, DONG H, LUO H, XIAN Y, WAN J, GUO X, WU Y. The application of stable isotope ratio analysis to determine the geographical origin of wheat. Food Chemistry, 2015, 174: 197-201.
[22]   TANG J, ZOU C, HE Z, SHI R, ORTIZ-MONASTERIO I, QU Y, ZHANG Y. Mineral element distributions in milling fractions of Chinese wheats. Journal of Cereal Science, 2008, 48(3): 821-828.
[23]   FARQUHAR G D, O’LEARY M H, BERRY J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology,1982,9: 121-137.
[24]   VAUGHN B H, EVANS C U, WHITE J W C, STILL C J, MASARIE K A, TURNBULL J. Global Network Measurements of Atmospheric Trace Gas Isotopes//Isoscapes, Understanding movement, pattern, and process on earth through isotope mapping,. Amsterdam: Springer. 2009: 3-31.
[25]   HOBSON K A, WASSENAAR L I, MILA B, LOVETTE I, DINGLE C, SMITH T B. Stable isotopes as indicators of altitudinal distributions and movement in an Ecuadorean hummingbird community. Oecologia, 2003, 136(2): 302-308.
[26]   KORNER C, FARQUHAR G D, ROKSANDIC Z. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia,1988, 74: 623-632.
[27]   VITORIA L, OTERO N, SOLER A, CANALS A. Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environmental Science & Technology, 2004, 38(12): 3254-3262.
[28]   BATEMAN A S, KELLY S D. Fertilizer nitrogen isotope signatures. Isotopes in Environmental & Health Studies, 2007, 43(3): 237-247.
[29]   BATEMAN A S, KELLY S D, JICKELLS T D. Nitrogen isotope relationships between crops and fertilizer implications for using nitrogen isotope analysis as an indicator of agricultural regime. Journal of Agricultural and Food Chemistry, 2005, 53: 5760-5765.
[30]   LIM S S, CHOI W J, KWAK J H, JUNG J W, CHANG S X, KIM H Y, YOON K S, CHOI S M. Nitrogen and carbon isotope responses of Chinese cabbage and chrysanthemum to the application of liquid pig manure. Plant & Soil, 2007, 295(1): 67-77.
[31]   LIU H Y, GUO B L, WEI Y M, WEI S, MA Y Y, ZHANG W. Effects of region, genotype, harvest year and their interactions on δ13C, δ15N and δD in wheat kernels. Food Chemistry,2015, 171: 56-61.
[32]   ARAUS J L, CABRERA-BOSQUET L, SERRET M D, BORT J, NIETO-TALADRIZ M T. Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Functional Plant Biology, 2013, 40: 595-608.
[33]   林植芳, 彭长连, 林桂珠. 大豆和小麦不同基因型的碳同位素分馏作用及水分利用效率. 作物学报, 2001, 27: 409-414.
LIN Z F, PENG C L, LIN G Z. Carbon isotope discrimination and water use efficiency in different soybean and wheat genotypes. Acta Agronomica Sinica, 2001, 27: 409-414. (in Chinese)
[34]   郑学玲, 李利民. 次粉及面粉淀粉的制备、分级与组成分析. 河南工业大学学报(自然科学版), 2008, 29(6): 9-12.
ZHENG X L, LI L M. The preparation, purification and composition analysis of wheat shorts and flour starches. Journal of Henan University of Technology (Natural Science Edition), 2008, 29(6): 9-12. (in Chinese)
[35]   陈薇, 郑学玲, 牛磊, 杨敬雨. 不同品种小麦麸皮、次粉组分分析研究. 粮油加工, 2007(6): 97-100.
CHEN W, ZHENG X L, NIU L, YANG J Y. Different varieties of wheat bran, wheat component analysis. Cereals and Oils Processing, 2007(6): 97-100. (in Chinese)
[36]   BOWLING D R, PATAKI D E, RANDERSON J T. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist, 2008, 178: 24-40.
[37]   BELTRÁN M, FERNÁNDEZ-BORRÁS J, MÉDALE F, PÉREZ- SÁNCHEZ J,  KAUSHIK S, BLASCO J. Natural abundance of 15N and 13C in fish tissues and the use of stable isotopes as dietary protein tracers in rainbow trout and gilthead sea bream. Aquaculture Nutrition, 2009, 15(1): 9-18.
[38]   GASTON T F, SUTHERS I M. Spatial varation in δ13C and δ15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage. Journal of Experimental Marine Biology and Ecology, 2004, 304: 17-33.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!