Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (3): 543-553.doi: 10.3864/j.issn.0578-1752.2016.03.012

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Analysis of Antioxidative Functional Components from Walnut Green Rind and Its Antioxidation Stability

TIAN Ping-ping, LI Ren-zhou, JIAN Yong-jian, LI Jian-ming, WANG Jie   

  1. College of Food Science, South China Agricultural University, Guangzhou 510642
  • Received:2015-06-29 Online:2016-02-01 Published:2016-02-01

Abstract: 【Objective】This research was conducted to study the analysis and antioxidation stability of antioxidative functional components from walnut green rind (AFCsWGR) which were purified by macroporous resin chromatography, which could provide a theoretical basis for the exploitation and effective utilization of walnut green rinds. 【Method】The crude extract was purified by D101 macroporous resin combined with DPPH free radical scavenging ability, and then concentrated and freeze-dried. Ultra high pressure liquid chromatography high resolution mass spectrometry (UPLC-MS) was used to analyze the AFCsWGR with strong antioxidative activity. The antioxidation stability of AFCsWGR was studied by analyzing the effect of pH, temperature, light, metal ions, oxygenant, reducer and preservative on antioxidation stability.【Result】The results showed that a total of seven antioxidative functional components in walnut green rinds were found, which included chlorogenic acid, brevifolin carboxylic acid, indigo flower- glucose/galactose, ellagic acid, quercetin arabinoside, epicatechin/catechin, quercetin -3-O- glucoside. The results of antioxidation stability of AFCsWGR showed that with the increase of pH value, the DPPH free radical scavenging rate of AFCsWGR decreased. The DPPH free radical scavenging rate was almost zero when the pH value was 12. The DPPH free radical scavenging rate of AFCsWGR could effectively be declined with the extension of storage time. The antioxidant capacity of AFCsWGR was gradually declined under indoor, light and avoiding light treatments, but there was no significant difference among them (P>0.05). The DPPH free radical scavenging rate of light treatment was lower than the other treatments during 2-5 h. The DPPH free radical scavenging rate of AFCsWGR treated at 4, 37, 70 and 90℃ was presented as a decreasing trend, but with the change trend of increasing first and decreasing thereafter was observed in 50℃ treatment. Fe3+ could maintain a higher antioxidant activity of AFCsWGR. However, Al3+, K+, Cu2+ and Mg2+ could effectively reduce the antioxidant activity of AFCsWGR. Sodium sulfite solution could reduce antioxidant ability of AFCsWGR. 0.10% and 0.05% H2O2 could improve the antioxidant ability of AFCsWGR, thereafter, the antioxidant ability decreased with the increase of the concentration of H2O2. Potassium sorbate solution could significantly reduce the antioxidant capacity of AFCsWGR (P<0.05), which exhibited a negative correlation between the antioxidant capacity of AFCsWGR and the contents of potassium sorbate solution.【Conclusion】The walnut green rind extract had a strong antioxidant activity. The main antioxidative functional components in the walnut green rinds were seven polyphenol active substances. Environmental factors could affect the antioxidation stability of AFCsWGR.:

Key words: walnut green rind, antioxidative functional components, identification, antioxidation stability

[1]    辛清武, 黄勤楼, 郑嫩珠, 朱志明, 缪中纬, 李丽, 张丹青. 食品添加剂研究概况及发展趋势. 农业开发与装备, 2015(4): 28-29.
Xin Q W, Huang Q L, Zheng N Z, Zhu Z M, Miu Z W, Li L, Zhang  D Q.Current status and development trend of research of food additives. Agricultural Development &Equipments, 2015(4): 28-29. (in Chinese)
[2]    张卫星, 何开泽, 蒲蔷. 核桃青皮提取物的抗菌和抗氧化活性. 应用与环境生物学报, 2014, 20(1): 87-92.
Zhang W X, He K Z, Pu Q.Antimicrobial and antioxidant activities of extracts from walnut green husks Antimicrobial and antioxidant activities of extracts from walnut green husks.Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 87-92. (in Chinese)
[3]    陆俊, 赵安琪, 成策, 单齐冀, 李忠海, 袁列江. 核桃营养成分与生理活性及开发利用. 食品与机械, 2014, 30(6): 238-242.
Lu J, Zhao A Q, Cheng C, San Q J, Li Z H, Yuan L J.Nutrient compositionphysiological activityand development and utilization on valnut. Food & Machinery, 2014, 30(6): 238-242. (in Chinese)
[4]    刘树兴, 赵芳. 从天然植物中开发抗氧化剂研究进展. 食品研究与开发, 2007, 28(7): 179-182.
Liu S X, Zhao F.Research progress on natural antioxidant from nature plant. Food Research and Development, 2007, 28(7): 179-182. (in Chinese)
[5]    孔浩, 张继. 天然抗氧化剂研究进展. 牡丹江师范学院学报: 自然科学版, 2008(1): 32-34.
Kong H, Zhang J. Research progress on natural antioxidant.Journal of Mudanjiang Normal University: Natural Sciences Edition, 2008(1): 32-34. (in Chinese)
[6]    刘艳, 方晨, 曹凯, 付俊, 徐岩, 张瑞等. 新疆核桃青皮提取物抗氧化作用研究. 食品工业, 2012, 33(9): 114-116.
Liu Y, Fang C, Cao K, Fu J, Xu Y, Zhang R. Study on antioxidant of extracts from walnut green rind in Xinjiang. The Food Industry, 2012, 33(9): 114-116. (in Chinese)
[7]    赵国建, 王向东, 王未芳. 核桃青皮多酚的抗氧化性研究. 农产品加工(学刊), 2011(2): 36-39.
Zhao G J, Wang X D, Wang W F. Antioxidant activity of polyphenols from walnut peel.Academic Periodical of Farm Products Processing, 2011(2): 36-39. (in Chinese)
[8]    万政敏. 核桃青皮中多酚类物质及其抗氧化性的分析[D]. 内蒙古农业大学, 2007.
Wan Z MDetermination of the polyphenols and the antioxidant activity in the walnut green rind[D]. Inner Mongolia Agricultural University, 2007. (in Chinese)
[9]    王淑萍, 孟祥颖, 齐晓丽, 张晓路, 薄华本, 乌垠, 鲍永利, 李玉新. 核桃楸皮挥发油化学成分分析. 分析化学, 2005, 33(7): 961-964.
Wang S P, Meng X Y, Qi X L, Zhang X L, Bo H B, Wu K, Bao Y L, Li Y X.Analysis of the volatile oil from the stem -bark of Juglans mandshurica Maxim (L.). Chinese Journal of Analytical Chemistry, 2005, 33(7): 961-964. (in Chinese)
[10]   Kumaran A, Karunakaran R J. Activity-guided isolation and identification of free radical-scavenging components from an aqueous extract of Coleus aromaticus. Food Chemistry, 2007, 100(1): 356-361.
[11]   马双双, 刘莹, 陈中惠, 黄文, 王益. 老熟莲子壳多酚的树脂法纯化及稳定性研究. 天然产物研究与开发, 2014, 26(2): 238-243.
Ma S S, Liu Y, Chen Z H, Huang W, Wang Y.Purification and stability of polyphenols from ageing lotus seed epicarp. Natural Product Research and Development, 2014, 26(2): 238-243. (in Chinese)
[12]   陈光英, 朱国元, 李国英, 吴晓鹏, 李庆洋, 方宏勋. 苦味叶下珠中多酚类成分的HPLC/MS/MS研究. 中成药, 2006, 28(1): 99-101.
Chen G Y, Zhu G Y, Li G Y, Wu X P, Li Q Y, Fang H X. HPLC-MS/MS study on phenolic compounds extraced from P. amarus. Chinese Traditional Patent Medicine, 2006, 28(1): 99-101. (in Chinese)
[13]   李辰辰, 陆小腾驾, 童华荣. HPLC-Q-TOF-MS-MS测定桑椹中多酚类物质. 食品科学, 2015, 36(2): 101-104.
Li C C, Lu X T J, Tong H R. Analysis of phenolic compounds in mulberry by high performance liquid chromatography-time of flight mass spectrometry. Chinese Food Science, 2015, 36(2): 101-104. (in Chinese)
[14]   孔祥虹, 付兴隆, 乐爱山, 何强. 超高效液相色谱-串联质谱法同时测定浓缩果汁中的18种多酚物质. 分析测试学报, 2011, 30(10): 1157-1162.
Kong X H, Fu X L, Le A S, He Q. Simultaneous determination of 18 polyphenolic compounds in juice concentrate using UPLC-MS /MS method. Journal of Instrumental Analysis, 2011, 30(10): 1157-1162. (in Chinese)
[15]   钟慧臻, 徐玉娟, 李春美, 温靖, 廖森泰, 陈卫东. 高效液相色谱-电喷雾离子阱质谱法测定荔枝果肉中酚类物质. 广东农业科学, 2010(4): 11-14.
Zhong H Z, Xu Y J, Li C M, Wen J, Liao S T, Chen W D. Analysis of phenolic compounds in pulp of litchi by high performance liquid chromatography-tandem mass spectrometry. Guangdong Agricultural Sciences, 2010(4):11-14. (in Chinese)
[16]   闫亚美, 戴国礼, 冉林武, 罗青, 李晓莺, 秦垦, 巫鹏举, 曾晓雄, 曹有龙. 不同产地野生黑果枸杞资源果实多酚组成分析. 中国农业科学, 2014, 47(22): 4540-4550.
Yan Y M, Dai G L, Ran L W, Luo Q, Li X Y, Qin K, Wu P J, Zeng X X, Cao Y L.The polyphenols composition of lycium ruthenicum murr. from different places.Scientia Agricultura Sinica, 2014, 47(22): 4540-4550. (in Chinese)
[17]   辛义周, 唐文照. 夏桑菊复方中多酚类成分的HPLC-MS分析. 山东中医杂志, 2013, 32(11): 828-830.
Xin Y Z, Tang W Z. HPLC-MS/MS analysis of polyphenols from Xiasangju formula. Shandong Journal of Traditional Chinese Medicine, 2013, 32(11): 828-830. (in Chinese)
[18]   苗爱清, 程悦, 梁祈, 赵超艺, 凌彩金, 庞式, 王冬梅. 白叶单枞不同发酵茶中多酚类成分的HPLC-MS/MS分析. 中国农学通报, 2011, 27(2): 360-366.
Miao A Q, Cheng Y, Liang Q, Zhao C Y, Ling C J, Pang S, Wang D M. HPLC-MS/MS analysis of polyphenols in different fermented type tea products prepared from camellia sinensis ‘Baiye Dancong’. Chinese Agricultural Science Bulletin, 2011, 27(2): 360-366. (in Chinese)
[19]   潘见, 杨毅, 夏潇潇, 吴方睿. 高效液相色谱-串联质谱测定砀山酥梨中的酚类物质. 食品科学, 2006, 27(12): 578-581.
Pan J, Yang Y, Xia X X, Wu F R. Analysis of phenolic compounds in dangshan pear by high performance liquid chromatography-tandem mass spectrometry. Chinese Food Science, 2006, 27(12): 578-581. (in Chinese)
[20]   李秀凤. 核桃青皮的成分与药理研究进展. 食品科技, 2007(4): 241-242.
Li X F. Progress of research on the chemical components and pharmaceutical action of walnut green husk. Food Science and Technology, 2007(4): 241-242. (in Chinese)
[21]   杨金枝, 陈锦屏. 核桃资源的综合开发利用.食品与药品, 2007, 9(4): 71-73.
Yang J Z, Chen J P. Present situation prospect on comprehensive development of walnut resources. Food and Drug, 2007, 9(4): 71-73. (in Chinese)
[22]   袁歆贻. pH与光照对苹果多酚稳定性的影响. 现代农业科技, 2014(19): 297-299.
Yuan X Y. Effect of pH and illumination on stability of apple polyphenol. Modern Agricultural Science and Technology, 2014(19): 297-299. (in Chinese)
[26]   Turturic? M, St?nciuc N, Bahrim G, Râpeanu G. Effect of thermal treatment on phenolic compounds from plum (Prunus domestica) extracts-A kinetic study. Journal of Food Engineering, 2016, 171: 200-207.
[27]   Yuan M, Jia X J, Yang Y, Ding C B, Du L, Yuan S, Zhang Z W, Chen Y G. Effect of light on structural properties and antioxidant activities of polysaccharides from soybean sprouts. Process Biochemistry, 2015, 50(7): 1152-1157.
[28]   Yuan M, Jia X J, Ding C B, Zeng H Q, Du L, Yuan S, Zhang Z W, Wu Q, Hu C, Liu J. Effect of fluorescence light on phenolic compounds and antioxidant activities of soybeans (Glycine max L. Merrill) during germination. Food Science and Biotechnology, 2015, 24(5): 1859-1865.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[4] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[5] YANG JingYa,HU Qiong,WEI HaoDong,CAI ZhiWen,ZHANG XinYu,SONG Qian,XU BaoDong. Consistency Analysis of Classification Results for Single and Double Cropping Rice in Southern China Based on Sentinel-1/2 Imagery [J]. Scientia Agricultura Sinica, 2022, 55(16): 3093-3109.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[8] ZHANG WeiDong,ZHENG YuJie,GE Wei,ZHANG YueLang,LI Fang,WANG Xin. Identification of Cashmere Dermal Papilla Cells Based on Single- Cell RNA Sequencing Technology [J]. Scientia Agricultura Sinica, 2022, 55(12): 2436-2446.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[11] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[12] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[13] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[14] YAO Qing,YAO Bo,LÜ Jun,TANG Jian,FENG Jin,ZHU XuHua. Research on Fine-Grained Image Recognition of Agricultural Light- Trap Pests Based on Bilinear Attention Network [J]. Scientia Agricultura Sinica, 2021, 54(21): 4562-4572.
[15] WANG ChengLi,YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi. Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(16): 3440-3450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!