Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (24): 4924-4935.doi: 10.3864/j.issn.0578-1752.2015.24.007

• PLANT PROTECTION • Previous Articles     Next Articles

Phylogenetic Study of Colletotrichum Species Associated with Camellia sinensis from the Major Tea Areas in China

WANG Yu-chun1, 2, HAO Xin-yuan2, HUANG Yu-ting2, YUE Chuan2, WANG Bo2, CAO Hong-li2, WANG Lu2, WANG Xin-chao2, YANG Ya-jun1, 2, XIAO Bin1   

  1. 1College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi
    2Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008
  • Received:2015-07-23 Online:2015-12-16 Published:2015-12-16

Abstract: 【Objective】 Anthracnose pathogens can infect tea leaves, causing extensive necrosis of leaves and defoliation. The objective of this study is to identify the pathogens causing anthracnose on tea plants from the major tea areas in China, and to provide an important scientific basis for tea plant disease management in the future. 【Method】 Colletotrichum species associated with anthracnose diseases of tea plants were isolated using single spore isolation and confirmed by DNA sequencing of the partial sequences of β-tubulin and rDNA-ITS region. Neighbor-Joining analysis was performed to establish the multilocus phylogeny using MEGA 6.0. The morphology of isolated strains growing on fresh PDA plates was also described. Pathogenicity of typical isolates was further verified by inoculation assay on the tea varieties of ‘Longjing 43’ and ‘Zhongcha 108’ with and without wound treatments. 【Result】 A total of 78 Colletotrichum strains were isolated from tea plants in 15 provinces (municipality, autonomous region) of China. The 2-locus (ITS, TUB2) dataset for phylogenetic analysis results showed that isolates clustered in three clades, 45 isolates clustered with the ex-type isolate of C. camelliae, 28 isolates clustered with C. fructicola, 5 isolates clustered with C. siamense and all isolates belonged to the C. gloeosporioides species complex. Moreover, the results showed that C. camelliae was the most widely distributed species in the tea regions of China, reflecting that it was the dominant Colletotrichum species on Camellia sinensis. Meanwhile, morphological analysis showed that C. camelliae colonies on PDA growth rate 11.8 mm·d-1, aerial mycelium white, dense, cottony; setae and sclerotium were not observed; conidiophores and conidiogenous cells were not observed; conidia hyaline, smooth-walled, cylindrical with obtuse ends, sometimes narrowed at the centre or towards the base, (8-15) µm×(3-6) µm; mycelial appressoria brown, clavate, irregularly shaped, branched, (8-10.5) µm×(6.5-8) µm; conidial appressoria were not observed. C. fructicola colonies on PDA growth rate 6.76 mm·d-1, aerial mycelium white, reverse brown in the centre, white at the margin, dense, cottony; setae and sclerotium were not observed. Conidiophores hyaline, septate, branched; conidiogenous cells hyaline, cylindrical, (7-18) μm, apex (1-2) μm diam. Conidia hyaline, cylindrical, both ends rounded, sometimes narrowed at the centre, (10-15) µm× (3-3.5) µm; mycelial appressoria dark brown, cylindrical, (6.5-8) µm×(3.5-5.5) µm; conidial appressoria dark brown or brown, rounded, (5-7) µm×(5-6.5) µm. C. siamense colonies on PDA growth rate 7.6 mm·d-1, white, dense, cottony; setae and sclerotium were not observed; Conidiophores hyaline, septate, branched. Conidiogenous cells hyaline, cylindrical, 8-16 μm, apex 1-2 μm diam. Conidia hyaline, cylindrical, fusiformis, sometimes narrowed at the centre, (9.5-13.5) µm×(3-3.5) µm; mycelial appressoria dark brown, rounded, clavate, irregularly shaped, (5-8) µm×(3-5.5) µm. Interestingly, pathogenicity test showed that the C. camelliae could cause anthracnose lesions on the wounded leaves of ‘Longjing 43’ but not on the intact leaves; on the contrary, there were no visible disease symptoms on the ‘Zhongcha 108’ leaves. Moreover, both C. fructicola and C. siamense did not show pathogenicity on these two tea varieties. 【Conclusion】 Based on the phylogenetic analyses and the morphological observation of Colletotrichum strains isolated from tea plants from 15 provinces (municipality, autonomous region) of China, it is concluded that C. camelliae is the main causal agent of Ca. sinensis anthracnose in the major tea areas of China.

Key words: anthracnose, tea plant, molecular phylogeny, Zhongcha 108, Longjing 43, pathogenicity

[1]    Rahmani A H, Al shabrmi F M, Aly S M, Allemailem K S, Khan M A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. BioMed Research International, 2015, 2015: Article ID 925640.
[2]    Saito E, Inoue M, Sawada N, Shimazu T, Yamaji T, Iwasaki M, Sasazuki S, Noda M, Iso H, Tsugane S. Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese population: the Japan Public Health Center-based Prospective Study (JPHC Study). Annals of Epidemiology, 2015, 25(7): 512-518.
[3]    Oh J K, Sandin S, Ström P, Löf M, Adami H O, Weiderpass E. Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. International Journal of Cancer, 2015, 137: 1979-1989.
[4]    杨亚军, 梁月荣. 中国无性系茶树品种志. 上海: 上海科学技术出版社, 2014: 6.
Yang Y J, Liang Y R. Clonal Variety of Tea in China. Shanghai: Shanghai Scientific and Technical Press, 2014: 6. (in Chinese)
[5]    Cai L, Hyde K D, Taylor P W J, Weir B S, Waller J M, Abang M M, Zhang J Z, Yang Y L, Phoulivong S, Liu Z Y, Prihastuti H, Shivas R G, McKenzie E H C, Johnston P R. A polyphasic approach for studying Colletotrichum. Fungal Diversity, 2009, 39: 183-204.
[6]    Hyde K D, Cai L, McKenzie E H C, Yang Y L, Zhang J Z, Prihastuti H. Colletotrichum: a catalogue of confusion. Fungal Diversity, 2009, 39: 1-17.
[7]    Hyde K D, Cai L, Cannon P F, Crouch J A, Crous P W, Damm U, Goodwin P H, Chen H, Johnston P R, Jones E B G, Liu Z Y, McKenzie E H C, Moriwaki J, Noireung P, Pennycook S R, Pfenning L H, Prihastuti H, Sato T, Shivas R G, Tan Y P, Taylor P W J, Weir B S, Yang Y L, Zhang J Z. Colletotrichum-names in current use. Fungal Diversity, 2009, 39: 147-182.
[8]    Weir B S, Johnston P R, Damm U. The Colletotrichum gloeosporioides species complex. Studies in Mycology, 2012, 73(1): 115-180.
[9]    Damm U, Cannon P F, Woudenberg J H C, Crous P W. The Colletotrichum acutatum species complex. Studies in Mycology, 2012, 73(1): 37-113.
[10]   Damm U, Cannon P F, Woudenberg J H C, Johnston P R, Weir B S, Tan Y P, Shivas R G, Crous P W. The Colletotrichum boninense species complex. Studies in Mycology, 2012, 73: 1-36.
[11]   Damm U, O’Connell R J, Groenewald J Z, Crous P W. The Colletotrichum destructivum species complex-hemibiotrophic pathogens of forage and field crops. Studies in Mycology, 2014, 79: 49-84.
[12]   Cannon P F, Damm U, Johnston P R, Weir B S. Colletotrichum- current status and future directions. Studies in Mycology, 2012, 73(1): 181-213.
[13]   Crouch J A. Colletotrichum caudatum s.l. is a species complex. IMA Fungus, 2014, 5(1): 17-30.
[14]   Liu F, Cai L, Crou P W, Damm U. The Colletotrichum gigasporum species complex. Persoonia, 2014, 33: 83-97.
[15]   Huang F, Chen G Q, Hou X, Fu Y S, Cai L, Hyde K D, Li H Y. Colletotrichum species associated with cultivated citrus in China. Fungal Diversity, 2013, 61(1): 61-74.
[16]   Yang Y L, Liu Z Y, Cai L, Hyde K D, Yu Z N, McKenzie E H C. Colletotrichum anthracnose of Amaryllidaceae. Fungal Diversity, 2009, 39: 123-146.
[17]   Yan J Y, Jayawardena M M R S, Goonasekara I D, Wang Y, Zhang W, Liu M, Huang J B, Wang Z Y, Shang J J, Peng Y L, Bahkali A, Hyde K D, Li X H. Diverse species of Colletotrichum associated with grapevine anthracnose in China. Fungal Diversity, 2014, 71(1): 233-246.
[18]   徐成楠, 王亚南, 胡同乐, 王树桐, 周宗山, 曹克强. 蓝莓炭疽病病原菌鉴定及致病性测定. 中国农业科学, 2014, 47(20): 3992-3998.
Xu C N, Wang Y N, Hu T L, Wang S T, Zhou Z S, Cao K Q. Identification and pathogenicity of pathogen casuing anthracnose on Vaccinium. Scientia Agricultura Sinica, 2014, 47(20): 3992-3998. (in Chinese)
[19]   Liu F, Damm U, Cai L, Crous P W. Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae. Fungal Diversity, 2013, 61(1): 89-105.
[20]   Lima N B, Batista M V, De Morais M A, Barbosa M A G, Michereff S J, Hyde K D, Câmara M P S. Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Diversity, 2013, 61(1): 75-88.
[21]   Udayanga D, Manamgoda D S, Liu X Z, Chukeatirote E, Hyde K D. What are the common anthracnose pathogens of tropical fruits? Fungal Diversity, 2013, 61(1): 165-179.
[22]   Liu F, Weir B S, Damm U, Crous P W, Wang Y, Liu B, Wang M, Zhang M, Cai L. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia, 2015, 35: 1-24.
[23]   Choi Y W, Hyde K D, Ho W H. Single spore isolation of fungi. Fungal Diversity, 1999, 3: 29-38.
[24]   Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876-4882.
[25]   杨亚军, 杨素娟, 杨跃华, 曾建明. 早生优质适制名优绿茶新品种——中茶108选育研究. 中国茶叶, 2003(2): 12-14.
Yang Y J, Yang S J, Yang Y H, Zeng J M. Breeding research of early and high quality system of famous green tea varieties-Zhongcha 108. China Tea, 2003(2): 12-14. (in Chinese)
[26]   陈宗懋, 陈雪芬. 茶树病害的诊断和防治. 上海: 上海科学技术出版社, 1990: 32-41.
Chen Z M, Chen X F. Disease Diagnosis and Prevention of Tea Plant. Shanghai: Shanghai Scientific and Technical Press, 1990: 32-41. (in Chinese)
[27]   Moriwaki J, Sato T. A new combination for the causal agent of tea anthracnose: Discula theae-sinensis (I. Miyake) Moriwaki & Toy. Sato, comb. nov. Journal of General Plant Pathology, 2009, 75(5): 359-361.
[28]   刘威. 茶树炭疽病的病原鉴定及其遗传多样性分析[D]. 福州: 福建农林大学, 2013.
Liu W. Anthracnose pathogens identification and the genetic diversity of tea plant[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese)
[29]   Guo M, Pan Y M, Dai Y L. First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui Province, China. Plant Disease, 2014, 98: 284.
[30]   Schoch C L, Seifert K A, Huhndorf S, Robert V, Spouge J L, Levesqueb C A, Chenb W, Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6241-6246.
[31]   Crouch J A, Clarke B B, Hillman B I. What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia, 2009, 101(5): 648-656.
[1] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[4] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[5] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[6] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[7] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[8] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[9] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[10] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[11] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[12] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[13] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[14] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[15] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!