Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (23): 4678-4689.doi: 10.3864/j.issn.0578-1752.2015.23.009
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
WANG Ren-jie1, Qiang Jiu Ci-ren2, XUE Yan-fei1, ZHANG Shu-lan1, YANG Xue-yun1
[1] Adesodun J K, Mbagwu J S C, Oti N. Distribution of carbon, nitrogen and phosphorus in water-stable aggregates of an organic waste amended Ultisol in southern Nigeria. Bioresource Technology, 2005, 96(4): 509-516.
[2] Mikha M M, Rice C W. Tillage and manure effect on soil and aggregate-associated carbon and nitrogen. Soil Science Society of America Journal, 2004, 68(3): 809-816.
[3] 卢金伟, 李占斌. 土壤团聚体研究进展. 水土保持研究, 2002 , 9(1): 81-85.
Lu J W, Li Z B. Advance in soil aggregate study. Research of Soil and Water Conservation, 2002, 9(1): 81-85. (in Chinese)
[4] 李文军, 杨基峰, 彭保发, 崔京珍. 施肥对洞庭湖平原水稻土团聚体特征及其有机碳分布的影响. 中国农业科学, 2014, 47(20): 4007-4015.
Li W J, Yang J F, Peng B F, Cui J Z. Effects of fertilization on aggregate characteristics and organic carbon distribution in a paddy soil in Dongting lake plain of China. Scientia Agricultura Sinica, 2014, 47(20): 4007-4015. (in Chinese)
[5] Madari B, Machado P, Torres E, Andrade A, Valencia L. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil and Tillage Research, 2005, 80(1/2): 185-200.
[6] Martens D A. Management and crop residue influence soil aggregate stability. Journal of Environmental Quality, 2000, 29: 723-727.
[7] Eynard A, Schumacher T E, Lindstrom M J, Malo D D. Effects of agricultural management systems on soil organic carbon in aggregates of Ustolls and Usterts. Soil and Tillage Research, 2005, 81: 253-263.
[8] 郭玉文, 加藤诚, 宋菲, 张玉龙, 曾思伟, 王得楷. 黄土高原黄土团粒组成及其与碳酸钙关系的研究. 土壤学报, 2004, 41(3): 362-368.
Guo Y W, Kato M, Song F, Zhang Y L, Zeng S W, Wang D K. Composition of loess aggregate and its relationship with CaCO3 on the Loess Plateau. Acta Pedologica Sinica, 2004, 41(3): 362-368. (in Chinese)
[9] 刘京, 常庆瑞, 李岗, 魏永胜. 连续不同施肥对土壤团聚体性影响的研究. 水土保持通报, 2000, 20(4): 24-26.
Liu J, Chang Q R, Li G, Wei Y S. Effect of different fertilization on soil characteristics of aggregate. Bulletin of Soil and Water Conservation, 2000, 20(4): 24-26. (in Chinese)
[10] 韩志卿, 韩志才, 张电学, 王秋兵, 陈洪斌, 常连生, 于玉桥, 刘东强. 不同施肥制度下褐土微团聚体碳氮分布变化及其对肥力的影响. 华北农学报, 2008, 23(4): 190-195.
Han Z Q, Han Z C, Zhang D X, Wang Q B, Chen H B, Chang L S, Yu Y Q, Liu D Q. Distributions of organic carbon and nitrogen in cinnamon soil micro-aggregates and effect on soil fertility under the different fertilization regimes. Acta Agriculturae Boreali-Sinica, 2008, 23(4): 190-195. (in Chinese)
[11] 杨长明, 欧阳竹, 董玉红. 不同施肥模式对潮土有机碳组分及团聚体稳定性的影响. 生态学杂志, 2005, 24(8): 887-892.
Yang C M, Ouyang Z, Dong Y H. Organic carbon fractions and aggregate stability in aquatic soil under different fertilization. Chinese Journal of Ecology, 2005, 24(8): 887-892. (in Chinese)
[12] 苗淑杰, 周连仁, 乔云发, 曲均峰, 徐文越. 长期施肥对黑土有机碳矿化和团聚体碳分布的影响. 土壤学报, 2009, 46(6): 1068-1075.
Miao S J, Zhou L R, Qiao Y F, Qu J F, Xu W Y. Organic carbon mineralization and carbon contribution in aggregates as affected by long-term fertilization. Acta Pedologica Sinica, 2009, 46(6): 1068-1075. (in Chinese)
[13] 周萍, 潘根兴. 长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响. 土壤通报, 2007, 38(2): 256-261.
Zhou P, Pan G X. Effect of different long-term fertilization treatments on particulate organic carbon in water-stable aggregates of a paddy soil. Chinese Journal of Soil Science, 2007, 38(2): 256-261. (in Chinese)
[14] 孙天聪, 李世清, 邵明安. 长期施肥对褐土有机碳和氮素在团聚体中分布的影响. 中国农业科学, 2005, 38(9): 1841-1848.
Sun T C, Li S Q, Shao M A. Effects of long-term fertilization on distribution of organic matters and nitrogen in cinnamon soil aggregates. Scientia AgriculturaSinica, 2005, 38(9): 1841-1848. (in Chinese)
[15] 高会议, 郭胜利, 刘文兆, 车升国, 李淼. 不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响. 土壤学报, 2010, 47(5): 932-938.
Gao H Y, Guo S L, Liu W Z, Che S G, Li M. Effect of fertilization on organic carbon distribution in various fractions of aggregates in Caliche soils. Acta Pedologica Sinica, 2010, 47(5): 932-938. (in Chinese)
[16] 刘恩科, 赵秉强, 梅旭荣, Hwat Bing-So, 李秀英, 李娟. 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响. 生态学报, 2010, 30(4): 1035-1041.
Liu E K, Zhao B Q, Mei X R, Hwat B S, Li X Y, Li J. Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application. Acta Ecologica Sinica, 2010, 30(4): 1035-1041. (in Chinese)
[17] 陈晓芬, 李忠佩, 刘明, 江春玉. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960.
Chen X F, Li Z P, Liu M, Jiang C Y. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China. Scientia Agricultura Sinica, 2013, 46(5): 950-960. (in Chinese)
[18] 徐江兵, 李成亮, 何园球, 王艳玲, 刘晓利. 不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响. 土壤学报, 2007, 44(4): 675-682.
Xu J B, Li C L, He Y Q, Wang Y L, Liu X L. Effect of fertilization on organic carbon and fractionation of aggregates in upland red soil. Acta Pedologica Sinica, 2007, 44(4): 675-682. (in Chinese)
[19] 陈友媛, 王俊鹏, 赵文娟, 高来见, 黄涛, 姚紫娟. 碳酸钙对黄河口潮间带沉积物微团聚体的影响. 海洋地质与第四纪地质, 2010, 30(4): 87-94.
Chen Y Y, Wang J P, Zhao W J, Gao L J, Huang T, Yao Z J. The effect of calcium carbonate on sediment aggregation in the intertidal zone of the Yellow River estuary. Marine Geology& Quaternary Geology, 2010, 30(4): 87-94. (in Chinese)
[20] Wang X J, Xu M G, Wang J P, Zhang W J, Yang X Y, Huang S M, Liu H. Fertilization enhancing carbon sequestration as carbonate in arid cropland: assessments of long-term experiments in northern China. Plant Soil, 2014, 380: 89-100.
[21] 李婕, 杨学云, 孙本华, 张树兰. 不同土壤管理措施下土团聚体的大小分布及其稳定性. 植物营养与肥料学报, 2014, 20(2): 346-354.
Li J, Yang X Y, Sun B H, Zhang S L. Effects of soil management practices on stability and distribution of aggregates in Lou soil. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 346-354. (in Chinese)
[22] 李婕, 黎青慧, 李平儒, 王莲莲, 杨学云, 张树兰. 长期有机肥施用、秸秆还田对土团聚体及其有机碳含量的影响. 土壤通报, 2012, 43(6): 1456-1460.
Li J, Li Q H, Li P R, Wang L L, Yang X Y, Zhang S L. Effects of long-term organic inputs on distribution of aggregate sizes and its organic carbon content on Lou soil. Chinese Journal of Soil Science, 2012, 43(6): 1456-1460. (in Chinese)
[23] Yang X Y, Ren W D, Sun B H, Zhang S L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 2012, 177/178: 49-56.
[24] Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. American Society of Agronomy, 1936, 28(5): 337-351.
[25] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Analysis of Soil and Agricultural Chemistry. Beijing: China Agriculture Press, 2000. (in Chinese)
[26] 王莲莲, 杨学云, 杨文静. 土壤碳酸盐几种测定方法的比较. 西北农业学报, 2013, 22(5): 144-150.
Wang L L, Yang X Y, Yang W J. Comparison of three methods for determination of soil carbonate. Acta Agriculturae Boreali- occidentalis Sinica, 2013, 22(5): 144-150. (in Chinese)
[27] 赵勇钢, 赵世伟, 华娟, 张扬. 半干旱典型草原区封育草地土壤结构特征研究. 草地学报, 2009, 17(1): 106-112.
Zhao Y G, Zhao S W, Hua J, Zhang Y. Soil structural properties of enclosed steppe in the semiarid area. Acta Agrestia Sinica, 2009, 17(1): 106-112. (in Chinese)
[28] 史振鑫, 吴景贵. 不同处理牛粪对黑土团聚体组成与稳定性的影响. 中国土壤与肥料, 2013(4): doi: 10. 11838 /sfsc. 20130403.
Shi Z X, Wu J G. Composition and stability of the aggregates in black soil applied with different cattle manures. Soil and Fertilizer Sciences in China, 2013(4): doi: 10. 11838 /sfsc. 20130403. (in Chinese)
[29] Fiho C C, Lourenco A, Guimaraes M F, Fonseca I C B. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil & Tillage Research, 2002, 65: 45-51.
[30] Bouajila A, Gallali T. Soil organic carbon fractions and aggregate stability in carbonated and no carbonated soils in Tunisia. Journal of Agronomy, 2008, 7(2): 127-137.
[31] 赵红, 袁培民, 吕贻忠, 李季. 施用有机肥对土壤团聚体稳定性的影响. 土壤, 2011, 43(2): 306-311.
Zhao H, Yuan P M, Lü Y Z, Li J. Effects of organic manure application on stability of soil aggregates. Soils, 2011, 43(2): 306-311. (in Chinese)
[32] 薛彦飞, 薛文, 张树兰, 杨学云. 长期不同施肥对土团聚体胶结剂的影响. 植物营养与肥料学报, 2015, http://www.cnki.net/kcms/ detail/11.3996.S.20150717.1518.008.html.
Xue Y F, Xue W, Zhang S L, Yang X Y. Effects of long-term fertilization regimes on changes of aggregate cementing agent of Lou Soil. Plant Nutrition and Fertilizer Science, 2015, http://www.cnki. net/kcms/detail/11.3996.S.20150717.1518.008.html. (in Chinese)
[33] Zhang S, Li Z, Yang X. Effects of long-term inorganic and organic fertilization on soil micronutrient status. Communications in Soil Science and Plant Analysis, 2015, 46: 1778-1790.
[34] Wang W, Chen W C, Wang K R, Xie X L, Yin C M, Chen A L. Effects of long-term fertilization on the distribution of carbon, nitrogen and phosphorus in water-stable aggregates in paddy soil. Agricultural Sciences in China, 2011, 10(12): 1932-1940.
[35] Yu H Y, Ding W X, Luo J F, Geng R L, Ghani A, Cai Z C. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biology and Fertility of Soils, 2012, 48: 325-336.
[36] Fonte S J, Yeboah E, Ofori P, Quansah G W, Vanlauwe B, Six J. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Science Society of America Journal,2009, 73(3): 961-966.
[37] Stewart C E, Paustian K, Conant R T, Plante A F, Six J. Soil carbon saturation: Implications for measurable carbon pool dynamics in long- term incubations. Soil Biology & Biochemistry, 2009, 41: 357-366.
[38] 郭兆元, 黄自立, 冯立孝. 陕西土壤. 北京: 科学出版社, 1992: 92.
Guo Z Y, Huang Z L, Feng L X. Shaanxi Soils. Beijing: Science Press, 1992: 92. (in Chinese)
[39] 李成亮, 孔宏敏, 何圆球. 施肥结构对旱地红壤有机质和物理性质的影响. 水土保持学报, 2004, 18(6): 116-119.
Li C L, Kong H M, He Y Q. Effect of fertilization structures on soil organic matter and physical properties of upland field in red soil area. Journal of Soil and Water Conservation, 2004, 18(6): 116-119. (in Chinese)
[40] Six J, Conant R T, Paul E A, Paustian K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 2002, 241(2): 155-176.
[41] Wu H B, Guo Z T, Gao Q, Peng C H. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agriculture, Ecosystems and Environment, 2009, 129(4): 413-421. |
[1] | REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916. |
[2] | LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122. |
[3] | YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198. |
[4] | REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610. |
[5] | JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594. |
[6] | MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605. |
[7] | Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418. |
[8] | XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201. |
[9] | XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223. |
[10] | YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233. |
[11] | WANG Le,CHEN YanHua,ZHANG ShuXiang,MA ChangBao,SUN Nan,LI ChunHua. Evolution of Fluvo-Aquic Soil Productivity Under Long-Term Fertilization and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2020, 53(11): 2232-2240. |
[12] | LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841. |
[13] | WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. |
[14] | SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483. |
[15] | WANG HuiYing, XU MingGang, ZHOU BaoKu, MA Xiang, DUAN YingHua. Response and Driving Factors of Bacterial and Fungal Community to Long-Term Fertilization in Black Soil [J]. Scientia Agricultura Sinica, 2018, 51(5): 914-925. |
|