Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (10): 2039-2048.doi: 10.3864/j.issn.0578-1752.2015.10.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Differentially Expressed microRNAs Screening Between Ovaries of Sheep Producing Single Lamb and Twins

QI Yun-xia1,2, LIU Xiao-fang3, ZHANG Ping3, HE Xiao-long2, XING Yu-mei3, Dalai2, Terigele2, LIU Yong-bin2, RONG Wei-heng2   

  1. 1Inner Mongolia Research Center for Prataculture , Chinese Academy of Sciences, Hohhot 010031
    2Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031
    3Inner Mongolia Livestock Improvement Station, Hohhot 010031
  • Received:2014-06-19 Online:2015-05-16 Published:2015-05-16

Abstract: 【Objective】This study was conducted to get a comprehensive understanding of miRNAs expression in sheep ovary, and to analyze their expression differences between sheep producing single lamb and twins, thus providing a basis for exploring the role of miRNAs in the regulation of fertility. 【Method】 Multi-species miRNA microarray was used to profile ovarian miRNAs expression in sheep. Firstly, single-lamb-producing and twin-producing ewes were selected. Ovaries were collected after estrus for total RNA extraction, and small RNA fragments were isolated and hybridized with miRNA microarray. Then data analysis was performed to obtain sheep ovarian miRNAs profile. Differentially expressed microRNAs were selected by bioinformatics software with the standard of q-value ≤ 5% and Fold Change ≥2 or ≤0.5, and q-PCR technique was employed to testify the microarray results. Two different methods, microT and miRDB, were used, respectively, and then data were merged and to predict target genes. Finally, online software was used to perform GO function annotation for target genes. 【Result】 Among all the detected miRNAs, a total of 5448 miRNAs were detected in sheep ovaries, of which 22 were specifically expressed in single-lamb-producing group, while 15 were in twin-producing group; For the miRNAs reported in sheep, expression differences were compared between two groups, and obtained 11 differentially expressed miRNAs, with 7 down-regulated and 4 up-regulated. Tow miRNAs were randomly selected to perform q-PCR validation, and the results were consistent with the microarray results, illustrating that the microarray results were accurate and credible. Target genes were obtained for 7 miRNAs: oar-miR-370-5p, oar-miR-376b-5p, oar-miR-381-5p, oar-miR-412-5p, oar-miR-541-3p, oar-miR-544-5p and oar-miR-1185-5p,and the number of target genes for each miRNAs was: 115, 71, 1, 5, 8, 135 and 23. The GO annotation results showed that target genes of miR-376b-5p and miR-1185-5p are mainly involved in forming intracellular components and organelles; in the molecular function category, the vast majorities of genes are the connection and catalytic activity molecules; in biological process, mainly involved in cell proliferation, differentiation, apoptosis and metabolism. Meanwhile, the target genes of miR-376b-5p ( IGF-1, DAZL, MTOR, MET and NEDD4 ) and miR-376b-5p ( AHR ) take part in reproduction regulation.【Conclusion】Sheep ovarian miRNAs expression profiling was successfully constructed, and differentially expressed miRNAs between single-lamb-producing and twin-producing sheep were obtained. These miRNAs may be involved in sheep follicular development and litter size regulation.

Key words: sheep, ovary, miRNAs, microarray

[1]    Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25-36.
[2]    Volinia S, Calin G A, Liu C G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt R L, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris C C, Croce C M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2257-2261.
[3]    Carleton M, Cleary M A, Linsley P S. MicroRNAs and cell cycle regulation. Cell Cycle, 2007, 6(17): 2127-2132.
[4]    Foshay K M, Gallicano G I. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Developmental Biology, 2009, 326(2): 431-443.
[5]    Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15-20.
[6]    Imbar T, Galliano D, Pellicer A, Laufer N. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles. Fertility and Sterility, 2014, 101(6):1514-1515.
[7]    Bernstein E, Kim S Y, Carmell M A, Murchison E P, Alcorn H, Li M Z, Mills A A, Elledge S J, Anderson K V, Hannon G J. Dicer is essential For mouse development. Nature Genetics, 2003, 35(3): 215-217.
[8]    Yang W J, Yang D D, Na S, Sandusky G E, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. The Journal of Biological Chemistry, 2005, 280(10): 9330-9335.
[9]    任刚, 杨增明. MicroRNA在雌性哺乳动物生殖中的作用. 细胞生物学杂志, 2009, 31(6): 805-810.
Ren G, Yang Z M. Role of microRNA in mammalian female reproduction. Chinese Journal of Cell Biology, 2009, 31(6): 805-810. (in Chinese)
[10]   Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton S C, Sun Y A, Lee C, Tarakhovsky A, Lao K, Surani M A. Maternal microRNAs are essential for mouse zygotic development. Genes & Development, 2007, 21(6): 644-648.
[11]   Kanellopoulou C, Muljo S A, Kung A L, Ganesan S, Drapkin R, Jenuwein T, Livingston D M, Rajewsky K. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development, 2005, 19(4): 489-501.
[12]   Murchison E P, Stein P, Xuan Z, Pan H, Zhang M Q, Schultz R M, Hannon G J. Critical roles for Dicer in the female germline. Genes & Development, 2007, 21(6): 682-693.
[13]   Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang Y J, Jiang Z, Du X, Cook R, Das S C, Pattnaik A K, Beutler B, Han J. Hypersusceptibility to vesicular stomatitis virus infection in Diced-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 2007, 27(1): 123-134.
[14]   Otsuka M, Zheng M, Hayashi M, Lee J D, Yoshino O, Lin S, Han J. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. The Journal of Clinical Investigation, 2008, 118(5): 1944-1954.
[15]   Nagaraja A K, Andreu-Vieyra C, Franco H L, Ma L, Chen R, Han D Y, Zhu H, Agno J E, Gunaratne P H, DeMayo F J, Matzuk M M. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Molecular Endocrinology, 2008, 22(10): 2336-2352.
[16]   Sirotkin A V, Ovcharenko D, Grossmann R, Lauková M, Mlyncek M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. Journal of Cellular Physiology, 2009, 219(2):415-420.
[17]   徐盛玉, 王定越, 吴德. MicroRNA及其对哺乳动物繁殖的影响. 畜牧兽医学报, 2011, 42(6): 747-753.
Xu S Y, Wang D Y, Wu D. Effects of microRNA on the mammalian reproduction. Acta Veterinaria et Zootechnica Sinica, 2011, 42(6): 747-753. (in Chinese)
[18]   Miles J R, McDaneld T G, Wiedmann R T, Cushman R A, Echternkamp S E, Vallet J L, Smith T P. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science, 2012, 130(1-2):16-26.
[19]   Kim V N. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes & Development, 2006, 20(15):1993-1997.
[20]   Chen C Z, Li L, Lodish H F, Bartel D P. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654): 83-86.
[21]   Chen J F, Mandel E M, Thomson J M, Wu Q, Callis T E, Hammond S M, Conlon F L, Wang D Z. The role of microRNA-1 and microRNA- 133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006, 38(2): 228-233.
[22]   Mishima Y, Stahlhut C, Giraldez A J. miR-1-2 gets to the heart of the matter. Cell, 2007, 129(2): 247-249.
[23]   Plasterk R H. MicroRNAs in animal development. Cell, 2006, 124(5):877-881.
[24]   Yang H, Kong W, He L, Zhao J J, O'Donnell J D, Wang J, Wenham R M, Coppola D, Kruk PA, Nicosia S V, Cheng J Q. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Research, 2008, 68(2): 425-433.
[25]   周莹, 朱英哲, 张素华, 王红梅, 王树玉, 杨晓葵. 卵巢早衰 microRNA 的差异表达及其作用. 中国优生与遗传杂志, 2011, 19(5): 20-22.
Zhou Y, Zhu Y Z, Zhang S H, Wang H M, Wang S Y, Yang X K. MicroRNA expression profiles in premature ovarian failure patients and its potential regulate functions. Chinese Journal of Birth Health & Heredity, 2011, 19(5): 20-22. (in Chinese)
[26]   Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Molecular Reproduction and Development, 2009, 76(7): 665-677.
[27]   Bachelot A, Monget P, Imbert-Bolloré P, Coshigano K, Kopchick J J, Kelly P A, Binart N. Growth hormone is required for ovarian follicular growth. Endocrinology, 2002, 143(10): 4104-4112.
[28]   Mao J, Smith M F, Rucker E B, Wu G M, McCauley T C, Cantley T C, Prather R S, Didion B A, Day B N. Effect of epidermal growth factor and insulin-like growth factor I on porcine preantral follicular growth, antrum formation, and stimulation of granulosal cell proliferation and suppression of apoptosis in vitro. Journal of Animal Science, 2004, 82(7): 1967-1975.
[29]   Beg M A, Bergfelt D R, Kot K, Ginther O J. Follicle selection in cattle: dynamics of follicular fluid factors during development of follicle dominance. Biology of Reproduction, 2002, 66(1): 120-126.
[30]   Gregoraszczuk E ?, Ptak A, Wojciechowicz T, Nowak K. Action of IGF-I on expression of the long form of the leptin receptor (ObRb) in the prepubertal period and throughout the estrous cycle in the mature pig ovary. Journal of Reproduction and Development, 2007, 53(2): 289-295.
[31]   Fang Q, Wang Y X, Zhou Y. Insulin-like growth factor binding protein 1 and human embryonic development during 6-10 gestational weeks. Chinese Medical Journal, 2004, 117(4): 488-491.
[32]   Rhoads M L, Meyer J P, Kolath S J, Lamberson W R, Lucy M C. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows. Journal of Dairy Science, 2008, 91(5): 1802-1813.
[33]   庞朋沙, 过倩萍, 伍会健. 细胞内 AhR 信号转导通路的机制研 究. 现代生物医学进展, 2010, 10(13): 2567-2570.
Pang P S, Guo Q P, Wu H J. Biological role of AhR signaling pathway. Progress in Modern Biomedicine, 2010, 10(13): 2567-2570. (in Chinese)
[34]   李淑晶, 刘文栋, 伍会健. 二英对雌激素受体的干扰作用. 生命科学, 2008, 20(5): 764-767.
Li S J, Liu W D, Wu H J. Interference of estrogen receptor by dioxin. Chinese Bulletin of Life Sciences, 2008, 20(5): 764-767. (in Chinese)
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[7] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[8] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[9] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[10] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[11] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[12] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[13] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[14] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[15] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!