Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (22): 4745-4752.doi: 10.3864/j.issn.0578-1752.2013.22.012

• HORTICULTURE • Previous Articles     Next Articles

Control of Exogenous H2O2 on Dry Rot of Potato Tuber and Possible Mechanism of Action

 HU  Lin-Gang, LI  Jian-Peng, LI  Yong-Cai, BI  Yang, GE  Yong-Hong, WANG  Yi   

  1. College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070
  • Received:2013-04-03 Online:2013-11-15 Published:2013-05-23

Abstract: 【Objective】The inhibitory effect of exogenous H2O2 against dry rot of potato and its mechanism of action were studied in this paper. 【Method】Mycelium growth, colonial morphology and hyphae ultrastructure of Fusarium sulphureum after treated with H2O2 were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in vitro test, and the curative and preventative effect of exogenous H2O2 on dry rot of potato tuber (Longshu No.3) inoculated with F. sulphureum pre- and post-etreatment were also evaluated.【Result】Spore germination and mycelium growth of F. sulphureum were strongly inhibited by exogenous H2O2 in a concentration-dependent manner. Besides, exogenous H2O2 could dramatically increase the membrane permability of F. sulphureum. Morphological changes such as asymmetrical, distorted, broken and wizened hyphae were observed by scanning electron microscopy (SEM) observation. Transmission electron microscopy (TEM) observation further documented these changes, irregularly thickened hypha cell walls and cavity could be observed. Results of in vivo test showed that exogenous H2O2 was effective in the control of dry rot of potato tuber inoculated with F. sulphureum pre- and post-etreatment.【Conclusion】 H2O2 can directly suppress the pathogen, and effectively increase the disease resistance of potato tuber tissue, thus it represent a potential fungicides for the integrated control of postharvest diseases in potato tuber.

Key words: potato , dry rot , H2O2 , antifungal activity , induced disease resistance

[1]杨志敏, 毕阳, 李永才, 寇宗红, 包改红, 刘成琨, 王毅, 王蒂. 马铃薯干腐病菌侵染过程中切片组织细胞壁降解酶的变化. 中国农业科学, 2012, 45(1): 127-134.

Yang Z M, Bi Y, Li Y C, Kou Z H, Bao G H, Liu C K, Wang Y, Wang D. Changes of cell wall degrading enzymes in potato tuber tissue slices infected by Fusarium sulphureum. Scientia Agricultura Sinica, 2012, 45(1): 127-134. (in Chinese)

[2]Li Y C, Bi Y, Ge Y H, Sun X J, Wang Y. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. Journal of Food Science, 2009, 74(5): 213-218.

[3]Bi Y, Li Y C, Ge Y H. Induced resistance in postharvest fruits and vegetables by chemical and its mechanism. Stewart Postharvest Review, 2007, 3(6): 1-7.

[4]石晶, 王金美, 孟一娟, 郭小佩. 食品级过氧化氢及其在食品工业中的应用.中国食品添加剂, 2009(4): 62-64.

Shi J, Wang J M, Meng Y J, Guo X P. Application of food grade hydrogen peroxide in food industry. China Food Additives, 2009(4): 62-64. (in Chinese)

[5]汪永超. 食品级双氧水及其在食品行业中的应用.食品工业科技, 2004, 25(3): 141-142.

Wang Y C. Application of food grade hydrogen peroxide in food industry. Science and Technology of Food Industry, 2004, 25(3): 141-142. (in Chinese)

[6]张平均. 食品级过氧化氢的消毒特性及其在食品行业中的应用. 中国乳品工业, 2005, (7): 47-50.

Zhang P J. Disinfection characteristic of the food grade hydrogen peroxide and its application in the food industry. China Dairy Industry, 2005, (7): 47-50. (in Chinese)

[7]Dias C V, Mendes J S, dos Santos A C, Pirovani C P, da Silva Gesteira A, Micheli F, Gramacho K P, Hammerstone J, Mazzafera P, de Mattos Cascardo J C. Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiology and Biochemistry, 2011, 49(8): 917-922.

[8]卢金, 杨颖丽, 贾鹏翔, 王娟, 尤佳, 王文瑞. 外源H2O2处理对小麦渗透性调节物的影响. 兰州大学学报: 自然科学版, 2012, 48(1): 79-85.

Lu J, Yang Y L, Jia P X, Wang J, You J, Wang W R. Effects of exogenous H2O2 on the osmotic regulations in wheat. Journal of Lanzhou University: Natural Sciences, 2012, 48(1): 79-85. (in Chinese)

[9]Liao W B, Zhang M L, Huang G B, Yu J H. Ca2+ and CaM are involved in NO- and H2O2-Induced adventitious root development in Marigold. Journal of Plant Growth Regulation, 2012, 31(2): 253–264.

[10]Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. The Plant Journal, 2006, 47(6): 907-916.

[11]李金亭, 赵萍萍, 邱宗波, 张元昊, 王明梅, 毕真真, 张佩佩. 外源H2O2对盐胁迫下小麦幼苗生理指标的影响. 西北植物学报, 2012, 32(9): 1796-1801.

Li J T, Zhao P P, Qiu Z B, Zhang Y H, Wang M M, Bi Z Z, Zhang P P. Effects of exogenous hydrogen peroxide on the physiological index of wheat seedlings under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(9): 1796-1801. (in Chinese)

[12]Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394(6693): 585-588.

[13]Lara L, Nello C, Piero P, Carlo S, Roberto L. Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. Physiologia Plantarum, 2010, 140(1): 89-102.

[14]Fan B, Shen Lin, Liu K L, Zhao D Y, Yu M M, Sheng J P. Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. Journal of the Science of Food and Agriculture, 2008, 88(7): 1238-1244.

[15]Bi Y, Tian S P, Guo Y R, Guo Y R, Ge Y H, Qin G Z. Sodium silicate reduces postharvest decay on Hami melons: induced resistance and fungistatic effects. Plant Disease, 2006, 90 (3): 279-283.

[16]钟秋平, 夏文水. 壳聚糖对芒果香蕉腐败病菌的抑菌性能研究. 食品科学, 2005, 26(11): 253-256.

Zhong Q P, Xia W S. Study on antifungal activity of chitosan for stem-rot pathogens in mango and crown rot pathogens in banana. Food Science, 2005, 26(11): 253-256. (in Chinese)

[17]周灵灵, 高海燕, 李标, 裴炜, 王文洪, 尹京苑. R-多糖对荔枝炭疽病菌的抑制作用研究. 中国食品学报, 2011, 11(7): 61-66.

Zhou L L, Gao H Y, Li B, Pei W, Wang W H, Yi J Y. Study on the inhibition action of R-polysacchsrides against Colletotrichum gloeosporioides of litchi. Journal of Chinese Institute of Food Science and Technology, 2011, 11(7): 61-66. (in Chinese)

[18]高向阳, 林碧润, 姚汝华, 谢双大, 沈会芳, 江学斌. 新抗生素万隆霉素对黄瓜疫病菌抑菌形态学研究. 华南农业大学学报, 2004, 25(4): 27-29.

Gao X Y, Lin B R, Yao R H, Xie S D, Shen H F, Jiang X B. Study on the morphology of the inhibitant effects of the new antibiotics wanglongmycin on Phytopthora melonis. Journal of South China Agricultural University, 2004, 25(4): 27-29. (in Chinese)

[19]毕阳, 张唯一. 感病甜瓜果实的呼吸、乙烯及过氧化物酶变化的研究. 植物病理学报, 1993, 23: 69-73.

Bi Y, Zhang W Y. Study on the changes in respiration, ethylene and peroxidase of infected muskmelon fruit. Acta Phytopathologica Sinica, 1993, 23: 69-73. (in Chinese)

[20]Ray H, Hammerschmidt R. Responses of potato tuber toinfection by Fusarium sambucinum. Physiological and Molecular Plant Pathology, 1998, 53(2): 81-92.

[21]Kong X, Zhang D, Pan J, Zhou Y, Li D. Hydrogen peroxide is involved in nitric oxide-induced cell death in maize leaves. Plant Biology, 2013, 15(1): 53-59.

[22]Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 2000, 57(5): 779-795.

[23]Shetty N P, Mehrabi R, Lutken H, Haldrup A, Kema G H J, Collinge D B, Jorgensen H J L. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist, 2007, 174(3): 637-664.

[24]Mellersh D G, Foulds I V, Higgins V J, Heath M C. H2O2 plays different roles in determining penetration failure three diverse plant–fungal interactions. Plant Journal, 2002, 29(3): 257-268.

[25]Cerioni L, Volentini S I, Prado F E, Rapisarda V A, Rodríguez- Montelongo L. Cellular damage induced by a sequential oxidative treatment on Penicillium digitatum. Journal of Applied Microbiology, 2010, 109(4): 1441-1449.

[26]Qin G Z, Liu J, Cao B H, Li B Q, Tian S P. Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen revealed by proteomic analysis. PLoS ONE, 2011, 6(7): e21945.

[27]方芳, 戴传超, 王宇. 一氧化氮和过氧化氢在内生真菌小克银汉霉属AL4诱导子促进茅苍术细胞挥发油积累中的作用. 生物工程学报, 2009, 25(10): 1490-1496.

Fang F, Dai C C, Wang Y. Role of nitric oxide and hydrogen peroxide in the essential oil increasing of suspension cells from Atractylodes lancea induced by endophytic fungal Cunninghamella sp. AL4 elicitor. Chinese Journal of Biotechnology, 2009, 25(10): 1490-1496. (in Chinese)

[28]Quan L J, Zhang B, Shi W W, Li H Y. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 2008, 50(1): 2-18.

[29]Wang J, Higgins V J. Nitric oxide modulates H2O2-mediated defenses in the Colletotrichum coccodes–tomato interaction. Physiological and Molecular Plant Pathology, 2005, 67: 131-137.

[30]Hancock J T, Desikan R, Clarke A, Hurst R D, Neill S J. Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiology and Biochemistry, 2002, 40: 611-617.

[31]Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, 2001, 98(23): 13454-13459.
[1] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[2] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[5] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[6] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[9] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[10] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[11] LI Xiang,ZHANG XiaoJiao,XIAO Chun,DONG WenXia. Electroantennogram Responses of Phthorimaea operculella of Different Sexes and Mating States to Potato Volatiles [J]. Scientia Agricultura Sinica, 2021, 54(3): 547-555.
[12] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[13] XIONG Yan,HAN Rui,HU ChunHua,WANG Jing,XIAO Chun. Influences of Chemical and Physical Stimuli on Oviposition Behavior of Phthorimaea operculella [J]. Scientia Agricultura Sinica, 2021, 54(3): 573-582.
[14] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[15] LIANG Wei,ZHU YaTong,CHAI XiuWei,KONG Rui,LI BinShan,LI YongCai,BI Yang,DOV Prusky. p-Coumaric Acid Promoted Wound Healing of Potato Tubers by Accelerating the Deposition of Suberin Poly Phenolic and Lignin at Wound Sites [J]. Scientia Agricultura Sinica, 2021, 54(20): 4434-4445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!