Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (15): 3220-3226.doi: 10.3864/j.issn.0578-1752.2013.15.017

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Analysis of Factors Affecting the Activity of AI-2 of Avian Pathogenic Escherichia coli

 BAI  Hao-1, 2 , HAN  Xian-Gan-1, LIU  Lei-1, QI  Ke-Zong-2, LIU  Hai-Wen-1, DING  Chan-1, YU  Sheng-Qing-1   

  1. 1.Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241
    2.College of Animal Science, Anhui Agricultural University, Hefei 230036
  • Received:2012-12-17 Online:2013-08-01 Published:2013-06-08

Abstract: 【Objective】 In this study, the relationship between the transcription level of luxS and pfs and AI-2 production in different growth phases and culture conditions were analyzed. 【Method】 AI-2 activity in different growth phases and culture conditions was measured using the V. harveyi bioluminescence assay.The levels of luxS and pfs mRNA were analyzed using real-time PCR. 【Result】 The results showed that the level of AI-2 was consistent with the level of luxS mRNA in different growth phases. AI-2 production and luxS mRNA by APEC was increased by supplementation of glucose, maltose, and NaCl, while the addition of sucrose was decreased. The transcription level of luxS was correlated to the level of AI-2 production, while the transcription level of pfs did not correlate with the level of AI-2 production. 【Conclusion】 The level of transcription of luxS is highly correlated with the level of AI-2 production,while the level of transcription of pfs does not correlate with the level of AI-2 production. Glucose, maltose and NaCl accelerate the synthesis of AI-2.

Key words: avian pathogenic Escherichia coli , autoindure-2 , luxS , pfs , real-time PCR

[1]Schouler C, Schaeffer B, Brée A, Mora A, Dahbi G, Biet F, Oswalde E, Mainil J, Blanco J, Schouleur M M. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. Journal of Clinical Microbiology, 2012, 50(5): 1673-1678.

[2]Tuntufye H N, Lebeer S, Gwakisa P S, Goddeeris B M. Identification of avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Applied and Environmental Microbiology, 2012, 78(9):3343-3351.

[3]Gonzalez J E, Keshavan N D. Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews, 2006, 70:859-875.

[4]Han X G, Lu C P. Biological activity and identification of a peptide inhibitor of LuxS from Streptococcus suis serotype 2. FEMS Microbiology Letters, 2009, 294(1):16-23.

[5]Rickard A H, Palmer R J, Blehert D S, Campagna S R, Semmelhack M F, Egland P G, Bassler B L, Kolenbrander P E. Autoinducer 2: aconcentration-dependent signal for mutualistic bacterial biofilm growth. Molecular Microbiology , 2006, 60(6): 1446-1456.

[6]Sperandio V, Mellies J L, Nguyen W, Shin S, Kaper J B. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:15196-15201.

[7]Stroeher U H, Paton A W, Ogunniyi A D, Paton J C. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Infection and Immunity, 2003, 71:3206-3212.

[8]DeLisa M P, Wu C F, Wang L, Valdes J J, Bentley W E. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. Journal of Bacteriology, 2001, 183: 5239-5247.

[9]Surette M G, Miller M B, Bassler B L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and vibrio harveyi: a new family of genes responsible for autoinducer production. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:1639-1644.

[10]Pei D H, Zhu J G. Mechanism of action of S-ribosylhomocysteinase (LuxS). Current Opinion in Chemical Biology, 2004, 8(5):492-497.

[11]Schauder S, Shokat K, Surette M G, Bassler B L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology, 2001, 41(2):463-476.

[12]Keersmaecker S C J D, Sonck K, Vanderleyden J. Let LuxS speak up in AI-2 signaling. Trends in Microbiology, 2006, 14(3):114-119.

[13]韩先干, 白灏, 刘蕾, 陈文静, 丁铲, 胡青海, 祁克宗, 于圣青. 禽致病性大肠杆菌安徽分离株luxS和pfs基因的克隆、表达与细胞外合成信号分子AI-2活性检测. 微生物学报,2012, 52(9): 1167-1172.

Han X G, Bai H, Liu L, Chen W J, Ding C, Hu Q H, Qi K Z, Yu S Q. Cloning and expression of luxS and pfs in vitro biosynthesis autoinducer 2 of Avian pathogenic Escherichia coli from Anhui Province. Acta Microbiologica Sinica, 2012, 52(9): 1167-1172. (in Chinese)

[14]Wang Y, Zhang W, Wu Z, Lu C. Reduced virulence is an important characteristic of  biofilm infection of Streptococcus suis.  FEMS Microbiology Letters, 2011, 316: 36-43.

[15]Surette M G, Bassler B L. Regulation of autoinducer production in Salmonella typhimurium. Molecular Microbiology, 1999, 31(2): 585-595.

[16]Surette M G, Bassler B L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12):7046-7050.

[17]Han X G, Bai Hao, Liu Lei, Dong H, Liu R, Song J, Ding C, Qi K, Liu H, Yu S. The luxS gene functions in the pathogenesis of Avian pathogenic Escherichia coli. Microbial Pathogenesis, 2013, 55: 22-27.

[18]Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25: 402-408.

[19]罗哲, 王敏, 杜鸿, 王菲, 孟彦辰, 倪斌, 徐顺高, 黄新祥. LuxS/AI-2对伤寒沙门菌基因表达的调节. 江苏大学学报,  2011, 21(1): 35-41.

Luo Z, Wang M, Du H, Wang F, Meng Y C, Ni B, Xu S G, Huang X X. Analysis of genes expression regulation controlled by luxS/AI-2 in Salmonella enterica serovar Typhi. Journal of Jiangsu University, 2011, 21(1): 35-41.(in Chinese)

[20]Jones M B, Blaser M J. Detection of a luxS-signaling molecule in Bacillus anthracis. Infection and Immunity, 2003, 71: 3914-3919.

[21]Miller M B, Skorupski K, Lenz D H, Taylor R K, Bassler B L. Parallel quorum sensing systems convergeto regulate virulence in vibrio cholera. Cell, 2002,110(3):303-314.

[22]Jenabian S M, Vogensen F K, Jespersen L. The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes. International Journal of Food Microbiology, 2011, 149, 269-273.

[23]Beeston A L, Surette M G. pfs-dependent regulation of autoinducer 2 production in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2002, 184(13):3450-3456.

[24]Han X G, Lu C P. Detection of autoinducer-2 and analysis of profile of luxS and pfs transcription in Streptococcus suis serotype 2. Current Microbiology, 2009, 58: 146-152.

[25]Nikhat Parveen, Kenneth A. Methylthioadenosine/S- adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Molecular Microbiology, 2011, 1: 7-20.

[26]Manjunath H, Englert D L, Shanna S, Cohn W B, Vogt C, Wood T K, Manson M D, Jayaraman A. Chemotaxis to the quorum-sensing signal AI-2 Requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-Binding protein. Journal of Bacteriology, 2011, 1893: 768-773.

[27]Winzer K, Hardie K R, Burgess N , Doherty N, Kirke D, Holden M T G, Linforth R. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology, 2002, 148: 909-922.

[28]Hardie K R, Cooksley C, Green A D, Winzer K. Autoinducer 2 activity in Escherichia coli culture supernatants can be actively reduced despite maintenance of an active synthase LuxS. Microbiology, 2003, 149: 715-728.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[3] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[6] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
[7] BAI HuiYang, LU Geng, LU JunXing, GUAN Li, TANG Xin, ZHANG Tao. Cloning and Expression Analysis of Jasmonic Acid Carboxyl Methyltransferase Gene from Perilla frutescens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1657-1666.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026.
[11] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[12] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[13] XIE Jie,WANG Ming,DING HongYing,LI Qing,WANG WanXing,XIONG XingYao,QIN YuZhi. Expression and Structural Analysis of SC MI390-5p and Its Target Genes in Potato Response to Low Temperature [J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308.
[14] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[15] SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber [J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!