Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (6): 1247-1255.doi: 10.3864/j.issn.0578-1752.2013.06.019

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Tissue Expression Profile and Bioinformatics Analysis of Abundance miR-101 from the Hypothalamus of Chicken

 LI  Guo-Xi, WANG  Le-Le, SUN  Gui-Rong, KANG  Xiang-Tao   

  1. College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University/Henan Innovative Engineering Research Center of Poultry Germ Plasm Resource, Zhengzhou 450002
  • Received:2012-09-02 Online:2013-03-15 Published:2012-11-20

Abstract: 【Objective】 The objective of this study is to comprehensively understand the chicken hypothalamus abundance miR-101 expression and potential biological function which will lay a foundation for revealing the molecular mechanisms of hypothalamic regulation of the chicken energy balance.【Method】 Stem-loop quantitative RT-PCR was used to detect the miR-101 expression in 13 different tissues of Gu-shi chicken at four developmental stages. The algorithms PicTar was used to predict miR-101 putative target genes. Gene Ontology, pathway and stratified enrichment were analyzed respectively to target genes. 【Result】 MiR-101 expression exhibitted striking temporal and tissue specificities. The miR-101 expression levels in different tissues of embryonic stages were significantly higher than the expression levels in homologous tissues of hatched chicks, the expression levels in the brain tissues were also significantly higher than the other tissues examined. MiR-101 had abundance enrichment in hypothalamus at 14 d embryonic age and in small intestine and crura muscle at 17 d embryonic age. Predicted target genes of miR-101 were significantly enriched in biological regulation, metabolic processes, developmental processes and cellular processes. Bioinformatics analysis of the nervous system development displayed that the regulatory function of miR-101 was mainly involved in brain development, neuron differentiation, regulation of neurogenesis, glial cell differentiation, astrocyte differentiation, and so on. 【Conclusion】 MiR-101 was the high expression miRNA in brain tissue, and may play an important role in regulating biological processes related to brain development.

Key words: miR-101 , tissue expression profile , target genes , GO term enrichment , chicken

[1]Sayed D, Hong C, Chen I Y, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 2007, 100(3): 416-424.

[2]Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, Wang H, Sun H, Volinia S, Alder H, Calin G A, Liu C G, Andreeff M, Croce C M. MicroRNA gene expression during retinoie acid—induced diferentiation of human acute pmmyelocytic leukemia. Oncogene, 2007, 26(28): 4148-4157.

[3]李惠侠, 王振云, 张震, 周璇, 王相臣, 韩兆玉, 王根林. 高温条件下miRNA-24 对奶牛乳腺上皮细胞增殖与凋亡的影响. 中国农业科学, 2010, 43(22): 4732-4738.

Li H X, Wang Z Y, Zhang Z, Zhou X, Wang X C, Han Z Y, Wang G L. Effects of microRNA-24 on bovine mammary epithelial cells proliferation and apoptosis at high temperature. Scientia Agricultura Sinica, 2010, 43(22): 4732-4738. (in Chinese)

[4]李国喜, 宁小敏, 康相涛, 杨公社. miRNA调控动物脂肪细胞的分化. 中国生物化学与分子生物学报, 2009, 25(4): 321-326.

Li G X, Ning X M, Kang X T, Yang G S. MicroRNAs regulate animal’s adipocyte differentiation. Chinese Journal of Biochemistry and Molecular Biology, 2009, 25(4): 321-326. (in Chinese)

[5]Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean D B, Zhang C. MiemRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circulation Research, 2007, 100(11): 1579-1588.

[6]Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350-355.

[7]孙桂荣. 鸡下丘脑发育相关差异miRNA和mRNA的鉴定及功能预测分析[D]. 郑州: 河南农业大学, 2011.

Sun G R. Expression profiles of miRNA and mRNA in chicken hypothalamus and its bioinformatics analysis[D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese)

[8]孙桂荣, 李明, 康相涛, 李国喜, 田亚东, 韩瑞丽, 白义春. 鸡miR-181a组织的表达谱及其转录调控区域. 中国农业科学, 2012, 45(9): 1826-1832.

Sun G R, Li M, Kang X T, Li G X, Tian Y D, Han R L, Bai Y C. The difference expression profiles of miR-181a and transcription regulation region analysis in chicken. Scientia Agricultura Sinica, 2012, 45(9): 1826-1832. (in Chinese)

[9]孙桂荣, 李国喜, 康相涛, 田亚东, 白义春, 韩瑞丽, 黄艳群. 鸡miR-9不同组织表达差异及其功能预测分析. 中国生物化学与分子生物学报, 2011, 27(5): 459-466.

Sun G R, Li G X, Kang X T, Tian Y D, Bai Y C, Han R L, Huang Y Q. Differential expression and bioinformatics analysis of miR-9 in chicken tissues. Chinese Journal of Biochemistry and Molecular Biology, 2011, 27(5): 459-466. (in Chinese)

[10]Griffiths-Jones S, Saini H K, van Dongen S, Enright A J. miRBase: tools for microRNA genomics. Nucleic Acids Research, 2008, 36: 154-158.

[11]Zhang J G, Guo J F, Liu D L, Liu Q, Wang J J. MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. Journal of Thoracic Oncology, 2011, 6(4): 671-678.

[12]Semaan A, Qazi A M, Seward S, Chamala S, Bryant C S, Kumar S, Morris R, Steffes C P, Bouwman D L, Munkarah A R, Weaver D W, Gruber S A, Batchu R B. MicroRNA-101 inhibits growth of epithelial ovarian cancer by relieving chromatin-mediated transcriptional repression of p21(waf¹/cip¹). Pharmaceutical Research, 2011, 28(12): 3079-3090.

[13]Zhu Q Y, Liu Q, Chen J X, Lan K, Ge B X. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. Journal of Immunology, 2010, 185(12): 7435-7442.

[14]Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. Journal of Biological Chemistry, 2010, 285(24): 18344-18351.

[15]Smits M, Mir S E, Nilsson R J, van der Stoop P M, Niers J M, Marquez V E, Cloos J, Breakefield X O, Krichevsky A M, Noske D P, Tannous B A, Würdinger T. Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One, 2011, 6(1): e16282.

[16]Frankel L B, Wen J, Lees M, Høyer-Hansen M, Farkas T, Krogh A, Jäättelä M, Lund A H. MicroRNA-101 is a potent inhibitor of autophagy. The Embo Journal, 2011, 30(22): 4628-4641.

[17]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15-20.

[18]Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nature Genetics, 2005, 37(5): 495-500.

[19]Dennis G Jr, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. DAVID: database for Annotation, visualization, and integrated discovery. Genome Biology, 2003, 4(5): P3.

[20]Boyle E I, Weng S, Gollub J, Jin H, Botstein D, Cherry J M, Sherlock G. GO: TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 2004, 20(18): 3710-3715.

[21]Giraldez A J, Cinalli R M, Glasner M E, Enright A J, Thomson J M, Baskerville S, Hammond S M, Bartel D P, Schier A F. MicroRNAs regulate brain morphogenesis in zebrafish. Science, 2005, 308(5723): 833-838.

[22]Johnston R J, Hobert O A. MicroRNA controlling left/right neuronal asymmetry in caenorhabditis elegans. Nature, 2003, 426(6968): 845-849.

[23]Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S. MicroRNA targets in Drosophila. Genome Biology, 2003, 5(1): R1.

[24]Long J M, Lahiri D K. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochemical and Biophysical Research Communications, 2011, 404(4): 889-895.

[25]Buechner J, Tømte E, Haug B H, Henriksen J R, Løkke C, Flægstad T, Einvik C. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. British Journal of Cancer, 2011, 105(2): 296-303.
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[7] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[8] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[9] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
[15] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!