Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (6): 1158-1165.doi: 10.3864/j.issn.0578-1752.2013.06.008

• PLANT PROTECTION • Previous Articles     Next Articles

Silencing Rice Stripe Virus Gene in Laodelphax striatellus (Fallén) by dsRNA Feeding

 CHEN  Ai-Ling, LIN  Ke-Jian, HE  Kang, WANG  Gui-Rong, LI  Fei   

  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2.College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Crop Pest Integrated Management, Ministry of Education, Nanjing 210095
  • Received:2012-11-13 Online:2013-03-15 Published:2012-12-26

Abstract: 【Objective】 The objective of this study is to use RNA interference (RNAi) technique to explore the feasibility of inhibiting the reproduction of Rice stripe virus (RSV) and to probe the interactions among different RSV genes in vitro. 【Method】 The inhibition function of exogenous dsRNAs to the expression of RSV genes in Laodelphax striatellus (Fallén) were investigated through feeding synthesized dsRNA in vitro. According to the sequences of RSV, three types of dsRNAs (dsRdRp, dsNSvc4, dsCP) were designed and synthesized and then used to feed 2nd instar L. striatellus that infested with RSV. The dsRNA were synthesized by using the T7 RiboMax Express RNAi System. Then 1 µg•µL-1 dsRNA was added to the artificial diet for feeding. The expression level of each RSV gene in insects was examined by quantitative real-time PCR (qRT-PCR) at 96th hour after dsRNA treatment. 【Result】 The results of qRT-PCR indicated that the expression of two RSV genes, NSvc4 and CP, decreased by 93.2% and 94.9%, respectively. Although the decreasing amplitude of RdRp gene was significantly lower, it still decreased by up to 45.6%. Further studies showed that the expressions of other non-target RSV genes decreased when feeding specific dsRNA, which indicated that interaction might exist among different RSV genes. 【Conclusion】 This study offered an important basis for controlling RSV through dsRNA microbe engineering or transgenic rice technology.

Key words: Laodelphax striatellus , Rice stripe virus (RSV) , RdRp , NSvc4 , CP , RNAi

[1]Ramirez B C, Haenni A L. Molecular biology of tenuiviruses, a remarkable group of plant-viruses. Journal of General Virology, 1994, 75(3): 467-475.

[2]Toriyama S, Watanabe Y. Characterization of single- and double-stranded RNAs in particles of rice stripe virus. Journal of General Virology, 1989, 70(3): 505-511.

[3]Poch O, Sauvaget I, Delarue M, Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. The EMBO Journal, 1989, 8(12): 3867-3874.

[4]熊如意. 水稻条纹病毒基因的原核表达及Ns3和Nsvc4的功能研究[D]. 杭州: 浙江大学, 2008.

Xiong R Y. Prokaryotic expression of Rice stripe virus genes and functional analysis of NS3 and NSvc4[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)

[5]Park H M, Choi M S, Kwak D Y, Lee B C, Lee J H, Kim M K, Kim Y G, Shin D B, Park S K, Kim Y H. Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice stripe virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene. Molecules and Cells, 2012, 33(1): 43-51.

[6]Zhu Y, Hayakawa T, Toriyama S, Takahashi M. Complete nucleotide sequence of RNA3 of rice stripe virus: an ambisense coding strategy. Journal of General Virology, 1991, 72(4): 763-767.

[7]林奇田, 林含新, 吴祖建, 林奇英, 谢联辉. 水稻条纹病毒外壳蛋白和病害特异蛋白在寄主体内的积累. 福建农业大学学报: 自然科学版, 1998, 27(3): 257-260.

Lin Q T, Lin H X, Wu Z J, Lin Q Y, Xie L H. Accumulations of coat protein and disease specific protein of rice stripe virus in its host. Journal of Fujian Agricultural University: Natural Science, 1998, 27(3): 257-260. (in Chinese)

[8]曲志才, 马向前, 白逢伟, 叶鸣明, 潘重光, 沈大棱. 活跃传毒介体灰飞虱 (Laodelphax striatellus)品系的杂交与选育. 复旦学报: 自然科学版, 2002, 41(6): 684-687.

Qu Z C, Ma X Q, Bai F W, Ye M M, Pan C G, Shen D L. Screening of active vector planthoppers (Laodelphax striatellus) by selection andcross breeding. Journal of Fudan University: Natural Science, 2002, 41(6): 684-687. (in Chinese)

[9]Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.

[10]Novina C D, Murray M F, Dykxhoorn D M, Beresford P J, Riess J, Lee S K, Collman R G, Lieerman J, Shankar P, Sharp P A. siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 2002, 8(7): 681-686.

[11]Tenllado F, Llave C, Diaz-Ruiz J R. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 2004, 102(1): 85-96.

[12]Olson K E, Higgs S, Gaines P J, Powers A M, Davis B S, Kamrud K I, Carlson J O, Blair C D, Beaty B J. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science, 1996, 272(5263): 884-886.

[13]Ma J, Song Y Z, Wu B, Jiang M S, Li K D, Zhu C X, Wen F J. Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Research, 2011, 20: 1367-1377.

[14]Alhoot M A, Wang S M, Sekaran S D. RNA interference mediated inhibition of dengue virus multiplication and entry in HepG2 cells. Plos One, 2012, 7(3) : e34060.

[15]Desai S D, Eu Y J, Whyard S, Currie R W. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Molecular Biology, 2012, 21(4): 446-455.

[16]杨杰, 王军, 陈志德, 周彤, 仲维功. 利用RT-PCR快速检测水稻条纹叶枯病病毒. 金陵科技学院学报, 2008, 24(1): 40-44.

Yang J, Wang J, Chen Z D, Zhou T, Zhong W G. Detecting Rice  stripe virus (RSV) in infected rice plants by RT-PCR. Journal of Jinling Institute of Technology, 2008, 24(1): 40-44. (in Chinese)

[17]Fu Q, Zhang Z T, Hu C, Lai F X, Sun Z X. A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Applied Entomology and Zoology, 2001, 36(1): 111-116.

[18]Kulkarni M M, Booker M, Silver S J, Friedman A, Hong P, Perrimon N, Mathey-Prevot B. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nature Methods, 2006, 3(10): 833-838.

[19]刘利华, 吴祖建, 林奇英. 水稻条纹叶枯病细胞病理变化的观察. 植物病理学报, 2000, 30(4): 306-311.

Liu L H, Wu Z J, Lin Q Y. Cytopathological observation of rice stripe. Acta Phytopathologica Sinica, 2000, 30(4): 306-311. (in Chinese)

[20]张开玉, 熊如意, 吴建祥, 周雪平, 周益军. 水稻条纹病毒编码蛋白在灰飞虱体内的检测及其与CP体外结合研究. 中国农业科学, 2008, 41(12): 4063-4068.

Zhang K Y, Xiong R Y, Wu J X, Zhou X P, Zhou Y J. Detection of the proteins encoded by Rice stripe virus in Laodelphax striatellus Fallén and interactions in vitro between CP and the four proteins. Scientia Agricultura Sinica, 2008, 41(12): 4063-4068. (in Chinese)

[21]鹿连明, 秦梅玲, 王萍, 兰汉红, 牛晓庆, 谢荔岩, 吴祖建, 谢联辉. 利用免疫共沉淀技术研究RSV CP、SP和NSvc4蛋白的互作. 农业生物技术学报, 2008, 16(5): 891-897.

Lu L M, Qin M L, Wang P, Lan H H, Niu X Q, Xie L Y, Wu Z J, Xie L H. Studies on the interactions between RSV CP, SP and NSvc4 proteins using co-immunoprecipitation technology. Journal of Agricultural Biotechnology, 2008, 16(5): 891-897. (in Chinese)

[22]Xiong R Y, Wu J X, Zhou Y J, Zhou X P. Identification of a movement protein of the Tenuivirus Rice stripe virus. Journal of Virology, 2008, 82(24): 12304-12311.

[23]Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 14147-14152.

[24]周益军, 熊如意, 周彤, 程兆榜, 杨荣明, 朱叶芹. 水稻条纹叶枯病. 1版. 南京: 江苏科学技术出版社, 2010: 14-26.

Zhou Y J, Xiong R Y, Zhou T, Cheng Z B, Yang R M, Zhu Y Q. Rice Stripe Virus Disease. 1st ed. Nanjing: Jiangsu Science and Technology Press, 2010: 14-26. (in Chinese)
[1] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[2] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[3] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[4] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[5] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[6] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[7] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[8] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[9] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[10] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[11] FU ChaoRan, LI YaZi, WU Han, ZHAO Dan, GUO Wei, GUO XiaoChang. Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua [J]. Scientia Agricultura Sinica, 2021, 54(18): 3881-3891.
[12] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[13] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[14] YANG HongKai,YANG JingWen,SHEN JianGuo,CAI Wei,GAO FangLuan. Multi-Gene-Based PCR Detection and Identification of Chilli veinal mottle virus [J]. Scientia Agricultura Sinica, 2020, 53(16): 3412-3420.
[15] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!