Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (5): 943-949.doi: 10.3864/j.issn.0578-1752.2013.05.009

• PLANT PROTECTION • Previous Articles     Next Articles

SCAR Molecular Markers Correlated with Populations of Meloidogyne incognita Virulent to Resistance Gene Me3

 WANG  Gang, LI  二Feng, MAO  Zhen-Chuan, XIE  Bing-Yan, FENG  Dong-Xin   

  1. Key Laboratory of Horticultural Crops Biology and Genetic Improvement, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2012-09-10 Online:2013-03-01 Published:2012-12-21

Abstract: 【Objective】Molecular markers of virulent populations against Me3 in Meloidogyne incognita was studied in order to detect the virulence mutation rapidly and effectively. 【Method】Root-knot nematode populations including avirulent population, populations overcoming resistant gene Me3 and the mixed group of the two population were used as experiment materials, polymerase chain reaction was done with 100 primer pairs designed according to M. incognita genome and 19 pairs reported in literature to screen specific band among three populations. And subsequently SCAR primers were designed and a multiplex PCR reaction system was built. 【Result】Seven primer pairs amplifying stability bands were screened, two of which were converted into SCAR markers differentiating the three populations. Multiplex PCR from avirulent population and Me3-virulent isolates generated a fragment of 999 and 629 bp, respectively, while from the mixed group generated both of the above fragments. 【Conclusion】Virulent mutation markers were successfully developed in M. incognita, and one-step multiplex PCR can be used for identification of Me3-virulence.

Key words: Meloidogyne incognita , molecular marker , SCAR , virulence mutation

[1]Trudgill D L, Blok V C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Reviews of Phytopathology, 2001, 39: 53-77.

[2]雷敬超, 黄慧琴. 南方根结线虫生物防治研究进展. 中国生物防治, 2007, 23(增刊): 76-81.

Lei J C, Huang H Q. Research advance on biological control of the Meloidogyne incognita. Chinese Journal of Biological Control, 2007, 23(Suppl.): 76-81. (in Chinese)

[3]赵鸿, 彭德良, 朱建兰. 根结线虫的研究现状. 植物保护, 2003, 29(6): 6-10.

Zhao H, Peng D L, Zhu J L. Reviews on the root-knot nematodes. Plant Protection, 2003, 29(6): 6-10. (in Chinese)

[4]Castagnone-Sereno P, Bongiovanni M, Palloix A, Dalmasso A. Selection for Meloidogyne incognita virulence against resistance genes from tomato and pepper and specificity of the virulence/resistance determinants. European Journal of Plant Pathology, 1996, 102: 585-590.

[5]Huang X, McGiffen M, Kaloshian I. Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. Journal of Nematology, 2004, 36(1): 69-75.

[6]Bleve-Zacheo T, Bongiovanni M, Melillo M T, Castagnone-Sereno P. The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Science, 1998, 133: 79-90.

[7]Djian-Caporalino C, Fazari A, Arguel M J, Vernie T , Casteele C V, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theoretical and Applied Genetics, 2007, 114(3): 473-486.

[8]Bost S C, Triantaphyllou A C. Genetic basis of the epidemiologic effects of resistance to Meloidogyne incognita in the tomato cultivar Small Fry. Journal of Nematology, 1982, 14(4): 540-544.

[9]Ornat C, Verdejo-Lucas S, Sorribas F J. A Population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease, 2001, 85(3): 271-276.

[10]Viglierchio D R. Resistant host responses to ten California populations of Meloidogyne incognita. Journal of Nematology, 1978, 10: 224-227.

[11]Kaloshian I, Williamson V M, Miyao G, Lawn D A, Westerdahl B B. Resistance-breaking nematodes identified in California tomatoes. California Agriculture, 1996, 50(6): 18-19.

[12]蒋丽芬, 茆振川, 陈国华, 杨宇红, 谢丙炎. 南方根结线虫辣椒Me3 毒性群体适合度代价及专化性分析. 园艺学报, 2011, 38(3): 479-486.

Jiang L F, Mao Z C, Chen G H, Yang Y H, Xie B Y. Fitness cost and specialization of pepper Me3 virulent population in the parthenogenetic nematode Meloidogyne incognita. Acta Horticulturae Sinica, 2011, 38(3): 479-486. (in Chinese)

[13]Lushai G, Loxdale H D, Allen J A. The dynamic clonal genome and its adaptative potential. Biological Journal of the Linnean Society, 2003, 79: 193-208.

[14]Castagnone-Sereno P. Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity, 2006, 96: 282-289.

[15]Castagnone-Sereno P, Bongiovanni M, Wajnberg E. Selection and parasite evolution: A reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita. Evolutionary Ecology, 2007, 21: 259-270.

[16]Puterka G J, Black Iv W C, Steiner W M, Burton R L. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity, 1993, 70: 604-618.

[17]Kelkar Y D, Strubczewski N, Hile S E, Chiaromonte F, Eckert K A, Makova K D. What is a microsatellite: A computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC Repeats. Genome Biology and Evolution, 2011, 2: 620-635.

[18]Soubabere O, Jorge V, Notteghem J L, Lebrun M H, Tharreau D. Sequence characerized amplified region markers for the rice blast fungus, Magnaporthe grisea. Molecular Ecology Notes, 2001, 1: 19-21.

[19]Xu M L, Korban S S. AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Molecular Biology, 2002, 50: 803-818.

[20]Niroshini E, Everard J M D T, Karunanayake E H K, Tirimanne T L S. Detection of sequence characterized amplified region (SCAR) markers linked to sex expression in Carica papaya L. Journal of the National Science Foundation of Sri Lanka, 2008, 36(2): 145-150.

[21]Xu J H, Liu P L, Meng Q P, Long H. Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. European Journal of Plant Pathology, 2004, 110: 309-315.

[22]Meng Q P, Long H, Xu J H. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. Javanica and M. Arenaria. Acta Phytopahologica Sinica, 2004, 34(3): 204-210.

[23]Cenis J L. Identification of four major Meloidogyne spp. by random amplified polymorphic DNA (RAPC-PCR). Phytopathology, 1993, 83: 76-78.

[24]Castagnone-Sereno P, Danchin E G J, Deleury E, Guillemaud T, Malausa T, Abad P. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics, 2010, 11(1): 598.

[25]Jung J, Han H, Ryu S H, Kim W. Microsatellite variation in the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle in South Korea. Genes & Genomics, 2010, 32(2): 151-158.

[26]Villate L, Esmenjaud D, Coedel S, Plantard O. Development of nine polymorphic microsatellite markers for the phytoparasitic nematode Xiphinema index, the vector of the grapevine fanleaf virus. Molecular Ecology Resources, 2009, 9(1): 229-232.

[27]Mulet K, Fargette M, Richaud M, Genson G, Castagnone-Sereno P. Isolation of microsatellites from an enriched genomic library of the plant-parasitic nematode Meloidogyne incognita and their detection in other root-knot nematode species. European Journal of Plant Pathology, 2010, 129(4): 501-505.
[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[5] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[6] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[7] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[8] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[9] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[10] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[11] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[12] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[13] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[14] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[15] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!