Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (4): 715-727.doi: 10.3864/j.issn.0578-1752.2013.04.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

甘蓝型油菜黄化突变体的叶绿体超微结构、 气孔特征参数及光合特性

 XIAO  Hua-Gui, YANG  Huan-Wen, RAO  Yong, YANG  Bin, ZHU  Ying, ZHANG  Wen-Long   

  1. 1.College of Tobacco Science, Yunnan Agricultural University, Kunming 650201
    2.Guizhou Institute of Oil Crops, Guiyang 550006
    3.Guizhou Institute of Biological Technology, Guiyang 550006
    4.Guiyang College of Traditional Chinese Medicine, Guiyang 550002
  • Received:2012-08-20 Online:2013-02-15 Published:2012-11-16

Abstract: 【Objective】 In order to discuss the yellowing mechanism and provide a theoretical basis in rape breeding practice, the relationship between chloroplast ultrastructure, stomatal characteristic parameters, photosynthetic pigment content and photosynthetic characteristics of the spontaneous chlorophyll-reduced mutant NY in B. napus L. were studied.【Method】Taking the rape mutant NY, wild type NG, F1 (NY×NG) and rF1(NG×NY) as research materials, the heart-leaf and the flatten-leaf at five-leaf stage were used for chloroplast ultrastructure observation, stomatal characteristic parameters investigation, photosynthetic pigment content determination, photosynthetic characteristics measurement and agronomic traits investigation.【Result】In general, the chloroplast development degree in yellow heart-leaf and yellow-green flatten-leaf from mutant NY was worse than that of wild type NG, F1 (NY×NG) and rF1(NG×NY) from chloroplast ultrastructure; the chloroplast numbers of heart-leaf in a lower epidermis stoma guard cell from mutant NY was decreased about 40%, whereas the number in yellow-green flatten-leaf was close to that of the wild-type NG in stomatal characteristic parameters; the Chla, Chlb, Chl(a+b), carotenoids and the net photosynthetic rate of mutant were significantly lower than those of the same period of wild-type and F1, rF1 in content and composition of photosynthetic pigment as well as photosynthetic characteristics. Correspondingly, the growth period delayed, economic traits deteriorated and grain yield per plant decreased, which happened in the mutant, but the above agronomic traits and photosynthetic characteristics from F1 and rF1 were restored to normal levels.【Conclusion】The mutant NY is one of total chlorophyll deficiency type caused by chloroplast structure developmental defects. Abnormal chloroplast structure, less grana and grana lamella and lower chlorophyll content are main reasons for mutant lower net photosynthetic rates and worst agronomic traits.

Key words: Brassica napus L. , chlorophyll-reduced mutant , chloroplast ultrastructure , stomatal characteristic parameters , photosynthetic pigment content , photosynthetic characteristics , agronomic traits

[1]Beale S I. Green genes gleaned. Trends in Plant Science, 2005, 10(7): 309-312.

[2]何冰, 刘玲珑, 张文伟, 万建民. 植物叶色突变体. 植物生理学通讯, 2006, 42(1): 1-9.

He B, Liu L L, Zhang W W, Wang J M. Plant leaf color mutants. Plant Physiology Communications, 2006, 42(1): 1-9. (in Chinese)

[3]William C T, Alice B, Robert A M. Use of nuclear mutants in the analysis of chloroplast development. Developmental Genetics, 1987, 8: 305-320.

[4]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902-906.

[5]Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends in Plant Science, 2004, 9(6): 293-301.

[6]Leverenz J W, Öquist G, Wingsle G. Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light. Physiologia Plantarum, l992, 85(3): 495-502.

[7]Mochizuki N, Brusslan J A, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proceeding of the National Academy Sciences of the USA, 2001, 98(4): 2053-2058.

[8]李向辉. 植物遗传操作. 北京: 高等教育出版社, 1994: 96-130.

Li X H. Plant Genetic Manipulation. Beijing: Higher Education Press, 1994: 96-130. (in Chinese)

[9]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-l988.

[10]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC Gene. Plant Physiology, 2001, 125: 1248-1257.

[11]Reyes-Arribas T, Barrett J E, Huber D J, Nell T A, Clark D G. Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiologia Plantarum, 2001, 111(4): 540-544.

[12]Zhou X S, Shen S Q, Wu D X, Sun J W, Shu Q Y. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Research, 2006, 96: 71-79.

[13]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breeding, 2000, 119: 131-135.

[14]龚红兵, 陈亮明, 刁立平, 盛生兰, 林添资, 杨图南, 张荣铣, 曹树青, 翟虎渠, 戴新宾, 陆巍, 许晓明. 水稻叶绿素b减少突变体的遗传分析及其相关特性. 中国农业科学, 2001, 34(6): 686-689.

Gong H B, Chen L M, Dao L P, Sheng S L, Lin T Z, Yang T N, Zhang R X, Cao S Q, Zhai H Q, Dai X B, Lu W, Xu X M. Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Scientia Agricultura Sinica, 2001, 34(6): 686-689. (in Chinese)

[15]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annual Review of Genetics, 1997, 31: 61-89.

[16]Jarvis P, Chen L J, Li H M, Peto C A, Fankhauser C, Chory J. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science, 1998, 282: 100-103.

[17]Murray D L, Kohorn B D. Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Molecular Biology, 1991, 16: 71-79.

[18]戴日春, 薛建明. 陆地棉黄绿苗突变体浙12-12N的叶绿素含量. 浙江农业大学学报, 1995, 21(2): l99-202.

Dai R C, Xue J M. Study on the chlorophyll content of a new yellow-green seedling mutant Zhe12-12N in upland cotton (Gossypium hirsutun L.). Journal of Zhejiang Agricultural University, 1995, 21(2): l99-202. (in Chinese)

[19]曹莉, 王辉, 孙道杰, 冯毅. 小麦黄化突变体光合作用及叶绿素荧光特性研究. 西北植物学报, 2006, 26(10): 2083-2087.

Cao L, Wang H, Sun D J, Feng Y. Photosynthesis and chlorophyll fluorescence characters of xantha wheat mutants. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2083-2087. (in Chinese)

[20]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiology, 1996, 112(2): 821-832.

[21]贾玉峰, 许耀奎, 邬信康. 春小麦黄绿色突变系的遗传及叶绿体结构的分析. 吉林农业大学学报, 1992, 14(1): 1-5.

Jia Y F, Xu Y K, Wu X K. Analysis of genetics and chloroplast structure of yellow-green mutational line of spring wheat. Journal of Jilin Agricultural University, 1992, 14(1): 1-5. (in Chinese)

[22]曹莉, 王辉, 孙道杰, 闵东红, 李学军, 冯毅. 小麦黄化突变体叶绿体超微结构研究. 西北植物报, 2006, 26(11): 2227-2230.

Cao L, Wang H, Sun D J, Min D H, Li X J, Feng Y. Chloroplast ultra-structure of a xantha wheat mutant. Acta Botanica Boreali- Occidentalia Sinica, 2006, 26(11): 2227-2230. (in Chinese)

[23]李玮, 于澄宇, 胡胜武. 芥菜型油菜叶片黄化突变体的初步研究. 西北农林科技大学学报:自然科学版, 2007, 35(9): 79-82, 89.

Li W, Yu C Y, Hu S W. Primary investigation on a chlorosis mutant in Brassica juncea L. Journal of Northwest A&F University: Natural Science Edition, 2007, 35(9): 79-82, 89. (in Chinese)

[24]Zhao Y, Di L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structural differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Botanica Sinica, 2001, 43(8): 877-880.

[25]张泽斌, 邓文辉, 欧阳文秋, 周荣富, 赵云. 黄化油菜Cr3529的光合特性和叶绿素荧光分析. 四川大学学报:自然科学版, 2009, 46(4): 1181-1187.

Zhang Z B, Deng W H, Ouyang W Q, Zhou R F, Zhao Y. Photosynthetic capabilities and chlorophyll fluorescence of a chlorophyll reduced seedling mutant Cr3529, Brassica napus L. Journal of Sichuan University: Natural Science Edition, 2009, 46(4): 1181-1187. (in Chinese)

[26]董遵, 刘敬阳, 马红梅, 许才康, 孙华, 张建栋. 甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构. 中国油料作物学报, 2000, 22(3): 27-29, 34.

Dong Z, Liu J Y, Ma H M, Xu C K, Sun H, Zhang J D. Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus. Chinese Journal of Oil crop Sciences, 2000, 22(3): 27-29, 34. (in Chinese)

[27]赵云, 王茂林, 李江, 张义正. 幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察. 四川大学学报:自然科学版, 2003,40(5): 974-977.

Zhao Y, Wang M L, Li J, Zhang Y Z. Observation of the chloroplast in chlorophyll-reduced seedling mutant Cr3529, Brassica napus L. Journal of Sichuan University: Natural Science Edition, 2003,40(5): 974-977. (in Chinese)

[28]吴跃进, 王学栋, 吴敬德, 许霞, 刘贵付. 水稻温敏型叶绿素突变体遗传及超微结构研究. 安徽农学院学报, 1991, 18(4): 258-262.

Wu Y J, Wang X D, Wu J D, Xu X, Liu G F. Studies on inheritance and ultrastructure of chloroplasts of the temperature sensitive chlorophyll mutations in rice. Journal of Anhui Agricultural College, 1991, 18(4): 258-262. (in Chinese)

[29]吴殿星, 舒庆尧, 夏英武, 刘贵付, 黎军英. 水稻转绿型白化突变系W25的叶绿体超微结构研究. 浙江农业大学学报, 1997, 23(4): 451-452.

Wu D X, Shu Q Y, Xia Y W, Liu G F, Li J Y. Study on chloroplast ultrastructure of a greenable albine mutation line cv. W25 of rice(Oryza sativa). Journal of Zhejiang Agricultural University, 1997, 23(4): 451-452. (in Chinese)

[30]欧立军. 水稻叶色突变体叶绿体发育规律研究. 西北植物学报, 2010, 30(1): 85-92.

Ou L J. Chloroplast development of a yellow-green mutant in rice (Oryza sativa L.). Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(1): 85-92. (in Chinese)

[31]吕典华, 宗学风, 王三根, 凌英华, 桑贤春, 何光华. 两个水稻叶色突变体的光合特性研究. 作物学报, 2009, 35(12): 2304-2308.

Lü D H, Zong X F, Wang S G, Ling Y H, Sang X C, He G H. Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agronomica Sinica, 2009, 35(12): 2304-2308. (in Chinese)

[32]欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37(10): 1860-1867.

Ou L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agronomica Sinica, 2011, 37(10): 1860-1867. (in Chinese)

[33]林钰琼, 刘松, 傅亚萍, 于永红, 胡国成, 斯华敏, 孙宗修. T-DNA插入水稻突变体库的叶绿素和净光合速率变化. 中国水稻科学, 2003, 17(4): 369-372.

Lin Y Q, Liu S, Fu Y P, Yu Y H, Hu G C, Si H M, Sun Z X. Chlorophyll contents and net photosynthetic rates of T-DNA inserted rice mutant populatlon. Chinese Journal of Rice Science, 2003, 17(4): 369-372. (in Chinese)

[34]Anderson J M, Goodchild D J, Boardman N K. Composition of the photosysterms and chloroplast structure in extreme shade plants. Biochimica et Biophysica Acta, 1973, 325(3): 573-585.

[35]Simpson D J, Machold O, Høyer-Hansen G, Wettstein D V. Chlorina mutants of barley (Hordeum vulgare L.). Carlsberg Research Communications, 1985, 50(4): 223-238.

[36]Lokstein H, Härtel H, Hoffmann P, Renger G. Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.). Journal of Photochemistry and Photobiology B: Biology, 1993, 19(3): 217-225.

[37]林宏辉, 何礼, 晏婴才, 代其林, 杜林方, 梁厚果, 汤泽生, 何兴金. 叶绿素缺乏大麦突变体叶绿体结构功能及生化特性的研究. 四川大学学报:自然科学版, 2001, 38(6): 899-904.

Lin H H, He L, Yan Y C, Dai Q L, Du L F, Liang H G, Tang Z S, He X J. Studies on structure and function of chloroplast in a chlorophyll-less barley mutant. Journal of Sichuan University: Natural Science Edition, 2001, 38(6): 899-904. (in Chinese)

[38]谭新星, 许大全. 叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光. 植物生生理学报, 1996, 22(1): 51-57.

Tan X X, Xu D Q. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient mutant of barly. Acta Phytophysiologica Sinica, 1996, 22(1): 51-57. (in Chinese)

[39]Bellemare G, Bartlett S G, Chua N H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorine f2 mutant of barley. Journal of Biological Chemistry, 1982, 257(13): 7762-7767.

[40]Keck R W, Dilley R A, Allen C F, Biggs S. Chloroplast composition and structure differences in a soybean mutant. Plant Physiology, 1970, 46(5): 692-698.

[41]张建农, 满艳萍, 燕丽萍. 黄化西瓜叶片叶绿体结构与光合作用特性. 果树学报, 2004, 2l(1): 50-53.

Zhang J N, Man Y P, Yan L P. Chloroplast structure and photosynthesis characteristics of leaves in the chlorophyl1-deficient watermelon plant. Journal of Fruit Science, 2004, 2l(1): 50-53. (in Chinese)

[42]常青山, 陈发棣, 滕年军, 张淑梅, 卢军刚, 陈素梅. 菊花黄绿叶突变体不同类型叶片的叶绿素含量和结构特征比较. 西北植物学报, 2008, 28(9): 1772-1777.

Chang Q S, Chen F D, Teng N J, Zhang S M, Lu J G, Chen S M. Chlorophyll contents and chloroplast microstructure and ultrastructure of leaves in yellow-green mutant of chrysanthemum. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(9): 1772-1777. (in Chinese)

[43]Lichtenthaler H K, Kuhn G, Prenzel U, Buschmann C, Meier D. Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Zeitschrift für Naturforschung, 1982, 37, 464-475.

[44]孟金陵. 芸薹属作物的气孔保卫细胞叶绿体数. 中国油料作物学报, 1993(1): 67-68.

Meng J L. Number of chloroplasts in stomatal guard cells in Brassica crops. Chinese Journal of Oil Crop Sciences, 1993(1): 67-68. (in Chinese)

[45]Lichtenthaler H K. Chlorophyll and carotenoids: pigments of photosynthetic biomembrances. Methods in Enzymology, 1987, 148: 350-382.

[46]叶尚红. 植物生理生化实验教程. 第2版. 昆明: 云南科技出版社, 2004: 124-127.

Ye S H. Plant Physiology and Biochemistry Experimental Course. 2nd Edition. Kunming: Yunnan Scientific and Technical Press, 2004: 124-127. (in Chinese)

[47]许大全. 光合作用效率. 上海: 上海科学技术出版社, 2002: 86-96.

Xu D Q. Photosynthetic Efficiency. Shanghai: Shanghai Scientific and Technical Press, 2002: 86-96. (in Chinese)

[48]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345.

[49]Ebukanson G J. Retardation of chloroplast ATPase activity in maize seedlings by drought stress. Journal of Plant Physiology, 1987, 129(1): 187-189.

[50]Gimenez C, Mitchell V J, Lawlor D W. Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology, 1992, 98(2): 516-524.

[51]Osborne B A, Raven J A. Light absorption by plants and its implications for photosynthesis. Biological Reviews, 1986, 61(1): 1-60.
[1] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[2] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[5] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[6] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[7] CHENG Bin,LIU WeiGuo,WANG Li,XU Mei,QIN SiSi,LU JunJi,GAO Yang,LI ShuXian,Ali RAZA,ZHANG Yi,Irshan AHMAD,JING ShuZhong,LIU RanJin,YANG WenYu. Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096.
[8] YU WeiZhen,ZHANG XiaoChi,HU Juan,SHAO JingYi,LIU Peng,ZHAO Bin,REN BaiZhao. Combined Effects of Shade and Waterlogging on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846.
[9] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[10] FAN Tao,LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng. Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951.
[11] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[12] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[13] WU CaoYang,LIANG ShiHan,QIU Jun,GAO JinFeng,GAO XiaoLi,WANG PengKe,FENG BaiLi,YANG Pu. An Examination on Breeding Status Quo of Chinese Tartary Buckwheat Varieties Based on the National Cross-Country Tests of Tartary Buckwheat Varieties in China over 12 Consecutive Years [J]. Scientia Agricultura Sinica, 2020, 53(19): 3878-3892.
[14] ZHANG ChunYu,BAI Jing,DING XiangPeng,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Staggered Planting with Increased Density on the Photosynthetic Characteristics and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(19): 3928-3941.
[15] LIU XiaoMing,GU WanRong,LI CongFeng,ZHANG LiGuo,WANG MingQuan,GONG ShiChen,CHEN XiChang,LI CaiFeng,WEI Shi,LI WenHua. Effects of Chemical Regulation and Nitrogen Fertilizer on Radiation, Heat and Water Utilization Efficiency and Yield of Spring Maize Under Dense Planting Condition [J]. Scientia Agricultura Sinica, 2020, 53(15): 3083-3094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!