Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (16): 3281-3287.doi: 10.3864/j.issn.0578-1752.2012.16.007

• PLANT PROTECTION • Previous Articles     Next Articles

Transcription Activity of a Transcription Factor StSte12 from Setosphaeria turcica and Function Analysis Through Yeast Complementation

 WU  Min, GU  Shou-Qin, LI  Po, WANG  Mei-Juan, ZHANG  Chang-Zhi, FAN  Yong-Shan, HAN  Jian-Min, DONG  Jin-Gao   

  1. 1.河北农业大学真菌毒素与植物分子病理学实验室,河北保定 071001
    2.河北省农林科学院植物保护研究所,河北保定 071000
    3.唐山师范学院生命科学系,河北唐山 063000
  • Received:2011-11-21 Online:2012-08-15 Published:2012-02-23

Abstract: 【Objective】 The objective of this study is to identify the structure characteristics, transcription activity and function of StSte12 from Setosphaeria turcica. 【Method】Conservative domain prediction and phylogenetic tree analysis were used to predict the possible function of StSte12 through bioinformatics analysis. The transcription activity of StSTE12 was tested by β-galactosidase activity method. Through characterization of growth of the StSTE12 complement transformant, in which StSTE12 was introduced into ScSTE12 null mutant of Saccharomyces ceresivisiae, the function of StSTE12 was preliminarily identified.【Result】StSte12 contained STE homeodomain and ZnF_C2H2¬ structure, which was the characteristics of Ste12-like transcription factor. Sequence analysis revealed that StSTE12 shared highly homology with other STE12-like genes of plant pathogens. StSte12 had transcription activation in vitro and could restore the function of ste12Δ of S. ceresivisiae, which regulated invasion growth of the yeast cell. 【Conclusion】Transcription factor StSTE12, a STE12-like gene from S. turcica, has a transcription activity and plays an important role in regulating the invasion growth of the cell on YPD medium.

Key words: Setosphaeria turcica, transcription factor, StSTE12, invasion growth

[1]Zhao X H, Mehrabi R, Xu J R. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 2007, 6(10): 1701-1714.

[2]Rispaila N, Soanes D M, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage A A, Gow N A R, Kahmann R, Lebrun M H, Lenasi H, Perez-Martin J, Talbot N, Wendland J, Pietro A D. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46(4): 287-298.

[3]Roman E, Arana D M, Nombela C, Alonso-Monge R, Pla J. MAP kinase pathways as regulators of fungal virulence. Trends in Microbiology, 2007, 15(4): 181-190.

[4]Guo J, Dai X, Xu J R, Wang Y, Bai P, Liu F, Duan Y, Zhang H, Huang L, Kang Z. Molecular characterization of a Fus3/Kss1 type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS ONE, 2011, 6(7): e21895.

[5]Takano Y, Kikuchi T, Kubo Y, Hamer J E, Mise K, Furusawa I. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Molecular Plant Microbe Interaction, 2000, 13(4): 374-383.

[6]Good M, Tang G, Singleton J, Remenyi A, Lim W A. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell, 2009, 136(6): 1085-1097.

[7]Hoi J W S, Dumas B. Ste12 and Ste12-Like proteins, fungal transcription factors regulating development and pathogenicity. Eukaryotic Cell, 2010, 9(4): 480-485.

[8]Rispail N, Pietro A D. The homeodomain transcription factor Ste12: connecting fungal MAPK signalling to plant pathogenicity. Communicative and Integrative Biology, 2010, 3(4): 327-332.

[9]Errede B, Ammerer G. Ste12, a protein involved in cell-type-speci?c transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes and Development, 1989, 3: 1349-1361.

[10]Park G, Xue C, Zheng L, Lam S, Xu J R. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Molecular Plant Microbe Interaction, 2002, 15(3): 183-192.

[11]Zhao X, Kim Y, Park G, Xu J R. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. The Plant Cell, 2005, 17(4): 1317-1329.

[12]Deng F, Allen T D, Nuss D L. Ste12 transcription factor homologue CpSTE12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryotic Cell, 2007, 6(2): 235-244.

[13]Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Molecular Plant Pathology, 2010, 11(1): 105-119.

[14]Cho Y, Kim K H, Rota M L, Scott D, Santopietro G, Callihan M, Mitchell T K, Lawrence C B. Identi?cation of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Molecular Microbiology, 2009, 72(6): 1316-1333.

[15]Rispail N, Pietro A D. Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Molecular Plant Microbe Interaction, 2009, 22: 830-839.

[16]Asuncion G S M, Martin-Rodrigues N, Ramos B, de Vega-Bartol J J, Perlin M H, Diaz-Minguez J M. fost12, the Fusarium oxysporum homolog of the transcription factor Ste12, is upregulated during plant infection and required for virulence. Fungal Genetics and Biology, 2010, 47(3): 216-225.

[17]Tsuji G, Fujii S, Tsuge S, Shiraishi T, Kubo Y. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Molecular Plant Microbe Interaction, 2003, 16(4): 315-325.

[18]Hoi J W S, Herbert C, Bacha N, O'Connell R, Lafitte C, Borderies G, Rossignol M, Rougé P, Dumas B. Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Molecular Microbiology, 2007, 64(1): 68-82.

[19]王  宁, 谷守芹, 范永山, 李  坡, 王文秀, 董金皋. 玉米大斑病菌STK1原核表达载体的构建及其表达, 中国农业科学, 2010, 43(18): 3876-3881.

Wang N, Gu S Q, Fan Y S , Li P, Wang W X, Dong J G. Construction and expression of prokaryotic expression vector of STK1 from Setosphaeria turcica. Scientia Agricultura Sinica, 2010, 43(18): 3876-3881. (in Chinese)

[20]赵  巍, 王  茜, 郝志敏, 王  青, 宋文静, 韩建民, 董金皋. 玉米大斑病菌蛋白激酶C 基因的克隆及表达规律分析. 中国农业科学, 2011, 44(5): 933-938.

Zhao W, Wang Q, Hao Z M, Wang Q, Song W J, Han J M, Dong J G. Cloning and expression of the gene encoding the protein kinase C in Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(5): 933-938. (in Chinese)

[21]Gietz R D, Woods R A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology, 2002, 350: 87-96.

[22]Tollot M, Hoi J W S, Van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas P M A. An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen. New Phytologist, 2009, 181(3): 693-707.

[23]Nolting N, Pöggeler S. A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Molecular Microbiology, 2006, 62(3): 853-868.

[24]Davidson J N, Niswander L A. Partial cDNA sequence to a hamster gene corrects defect in Escherichia coli pyrB mutant. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(22): 6897-6901.

[25]Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller A J, Xu G. Two rice phosphate transporters, Os-Pht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal, 2009, 57(5): 798-809.
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[4] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[5] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[6] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[7] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[8] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[9] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[10] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[11] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[12] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[13] ZHANG XiangYu,GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong. Gene Mapping and Candidate Gene Analysis of Grain Width Mutant gw87 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2487-2498.
[14] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[15] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!