Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (18): 3812-3821.doi: 10.3864/j.issn.0578-1752.2011.18.012

• HORTICULTURE • Previous Articles     Next Articles

Progress in Transgenic Breeding Research of Gramineous Forage and Turfgrass

GUO  Yang-Dong, LI  Wei, LI  Ren, WU  Xin-Xin, ZHAO  Bing, MAO  Pei-Sheng   

  1. 1. 中国农业大学农学与生物技术学院
    2. 中国农业大学动物科技学院草业科学系
  • Received:2011-04-27 Revised:2011-05-27 Online:2011-09-15 Published:2011-05-31
  • Contact: Yang-dong Guo E-mail:liwei2010cau@sina.cn

Abstract: Gramineous forage and turf grasses are critical to sustainable agriculture and contribute extensively to urban landscaping. In recent years, with the rapid development of biotechnology, the significant progresses have been made in transgenic research of gramineous forage and turf grasses. This review sums up the developments of genetic transformation systems for gramineous forage and turf grass plants, and summarizes the latest progresses in transgenic research for increasing tolerance to biotic and abiotic stress. It also analyzes the existing problems such as the safety and stability of transgenic technology, and points out the prospects to the further research.

Key words: Gramineae, forage, turfgrass, transgene, breeding

[1]Guo Y D, Mizukami Y, Yamada T. Genetic characterization of androgenic progeny derived from Lolium perenne × Festuca pratensis cultivars. New Phytologist, 2005, 166 (2): 455-464.

[2]Wang Z Y, Ge Y. Invited review: recent advances in genetic transformation of forage and turf grasses. In Vitro Cellular and Developmental Biology - Plant, 2006, 42 (1): 1-18.

[3]Horn M E, Shillito R D, Conger B V, Harms C T. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Reports, 1988, 7: 469-472.

[4]Ha S B, Wu F S, Thorne T K. Transgenic turf-type tall fescue plant regenerated from protoplasts. Plant Cell Reports, 1992, 11 (12): 601-604.

[5]Wang Z Y, Takamizo T, Iglesias V A, Osusky M, Nagel J, Potrykus I, Spangenberg G. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Biology Technology, 1992, 10 (6):691-696.

[6]Inokuma C, Sugiura K, Imaizumi N, Cho C. Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants regenerated from protoplasts. Plant Cell Reports, 1998, 17 (5): 334-338.

[7]Asano Y, Ito Y, Fukami M, Sugiura K, Fujiie A. Herbicide-resistant transgenic creeping bentgrass plants obtained by electroporation using an altered buffe. Plant Cell Reports, 1998, 17 (12):963-967.

[8]Spangenberg G, Wang Z Y, Wu X L, Nagel J, Potrykus I. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Science, 1995, 108 (2):209-217.

[9]Spangenberg G, Wang Z Y, Wu X L, Nagel J, Iglesias V A, Potrykus I. Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. Journal of Plant Physiology, 1995, 145 (5-6): 693-701.

[10]Dalton S J, Bettany A J E, Timms E, Morris P, Dalton S J. Co-transformed, diploid Lolium perenne (Perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Reports, 1999, 18 (9):721-726.

[11]马忠华, 张云芒, 徐传祥, 陈文峻, 尹红华, 蒯本科. 早熟禾的组织培养和基因枪介导的基因转化体系的初步建立. 复旦大学学报自然科学版, 1999, 38 (5): 540-544.

Ma Z H, Zhang Y M, Xu C X, Chen W J, Yin H H, Kuai B K. Tissue culture and genetic transformation of kentucky bluegrass (Poa pratensis) via microprojectile bombardment. Journal of Fudan University: Natural Science, 1999, 38 (5): 540-544. (in Chinese)

[12]王  艳, 李建龙, 潘永年, 王加真.草坪草转基因育种研究进展. 草原与草坪, 2007(4): 13-17.

Wang Y, Li J L, Pan Y N, Wang J Z. Research progress in transgenic breeding of excellent warm-season turfgrass. Grassland and Turf, 2007(4): 13-17. (in Chinese)

[13]柴明良, 王贺飞.草坪草转基因的回顾和展望.浙江大学学报: 农业与生命科学, 2006, 32 (3): 276-282.

Chai M L, Wang H F. Review and prospect of genetic transformation in turfgrasses. Journal of Zhejiang University: Agriculture and Life Science, 2006, 32 (3):276-282. (in Chinese)

[14]王艳丽, 叶兴国, 董  芳, 乔卫华, 陶丽莉, 李晓璐, 许  兴. 高羊茅和黑麦草农杆菌介导转化体系的研究. 中国生物工程杂志, 2007, 27 (1): 22-27.

Wang Y L, Ye X G, Dong F, Qiao W H, Tao L L, Li X L, Xu X. Agrobacterium- mediated transformation of tall fescue and perennial ryegrass. China Biotechnology, 2007, 27 (1): 22- 27. (in Chinese)

[15]胡繁荣. 农杆菌介导获得转基因抗虫匍匐翦股颖植株. 农业生物技术学报, 2005, 13(2): 262-263.

Hu F R. Obtaining insect-resistant transgenic plants of creeping bentgrass (Agrostis stolonifera L.) mediated by Agrobacterium tumefaciens. Journal of Agricultural Biotechnology, 2005, 13 (2): 262-263. (in Chinese)

[16]Lee K W, Choi G. J, Kim K Y, Yoon S H, Ji H C, Park H S, Lim Y C, Lee S H. Genotypic variation of Agrobacterium-mediated transformation of Italian ryegrass. Electronic Journal of Biotechnology, 2010, 13 (3): 1-10.

[17]王奇丽, 何近刚, 陈彦龙, 张小芸, 吴金霞. 农杆菌介导多年生黑麦草转化体系的建立. 中国农业科技导报, 2009, 11(2): 119-123.

Wang Q L, He J G, Chen Y L, Zhang X Y, Wu J X. Establishment of an Agrobacterium mediated transformation system for Lolium perenne L. Journa l of Agricultural Science and Technology, 2009, 11(2): 119-123. (in Chinese)

[18]Hu F R. Optimization of genetic transformation conditions in Cynodon dactylon mediated by Agrobacterium tumefaciens. Journal of Plant Resources and Environment, 2005, 14(2): 15-18.

[19]Ge Y X, Norton T, Wang Z Y. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Reports, 2006, 25 (8): 792-798.

[20]Guo Y-D, Hisano H, Shimamoto Y, Yamada T. Transformation of androgenic-derived Festulolium plants (Lolium perenne L. × Festuca pratensis Huds.) by Agrobacterium tumefaciens. Plant Cell Tissue and Organ Culture, 2009, 96(2): 219-227.

[21]Guo Z F, Bonos S, Meyer W A, Day P R, Belanger F C. Transgenic creeping bentgrass with delayed dollar spot symptoms. Molecular Breeding, 2003, 11 (2): 95-101.

[22]Dai W D, Bonos S, Guo Z, Meyer W A, Day P R, Belanger F C. Expression of pokeweed antiviral proteins in creeping bentgrass. Plant Cell Reports, 2003, 21 (5): 497-502.

[23]Altpeter F, Xu J P, Salahuddin A. RNA-mediated virus resistance in fertile transgenic perennial ryegrass plants[A]. Molecular breeding of forage crops: proceedings of the 2nd International Symposium, Molecular Breeding of Forage Crops[C]. Dordrecht Boston: Kluwer Academic Publishers, 2001: 103.

[24]马生健, 徐碧玉,曾富华, 卢向阳. 高羊茅抗真菌病基因转化的研究. 园艺学报, 2006, 33 (6): 1275-1280.

Ma S J, Xu B Y, Zeng F H, Lu X Y. Studies on genetic transformation with resistance to fungi disease of tall fescue. Acta Horticulturae Sinica, 2006, 33 (6): 1275-1280. (in Chinese)

[25]孔  政, 赵德刚. 苦瓜几丁质酶基因- 益母草抗菌肽基因遗传转化黑麦草. 分子植物育种. 2008, 6(2): 281-285.

Kong Z, Zhao D G. The combination of CHI and AFP genes introduced into ryegrass mediated by Agrobacterium. Molecular Plant Breeding, 2008, 6(2): 281-285. (in Chinese)

[26]Dong S, Tredway L P, Shew H D, Wang G L, Sivamani E, Qu R. Resistance of transgenic tall fescue to two major fungal diseases. Plant Science, 2007, 173 (5): 501-509.

[27]叶晓青, 佘建明,王松凤, 张保龙, 唐  侃, 倪万潮. 农杆菌介导法获得匍匐翦股颖转GO基因植株. 江苏农业学报, 2008, 24(3): 251-256.

Ye X Q, She J M, Wang S F, Zhang B L, Tang K, Ni W C. Acquirement of GO transgenic plants by agrobacterium tumefaciens in creeping bentgrass(Agrostis stolonifera L.). Jiangsu Journal of Agricultural Sciences, 2008, 24(3): 251-256. (in Chinese)

[28]佘建明, 张保龙, 梁流芳, 何晓兰, 姚  妹, 陈志一, 倪万潮. 草地早熟禾转葡萄糖氧化酶基因植株的获得. 江苏农业学报, 2006, 22(3): 217-221.

She J M, Zhang B L, Liang L F, He X L, Yao S, Chen Z Y, Ni W C. Acquirement of transgenic plants with glucose oxidase gene in kentucky bluegrass (Poa pratensis L.). Jiangsu Journal of Agricultural Sciences, 2006, 22(3): 217-221. (in Chinese)

[29]Takahashi W, Fujimori M, Miura Y, Komatsu T, Nishizawa Y, Hibi T, Takamizo T. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Reports, 2005, 23(12): 811-818.

[30]Dong S, Shew H D, Tredway L P, Lu J, Sivamani E, Miller E S, Qu R. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. Transgenic Research, 2008, 17 (1): 47-57.

[31]佘建明, 张保龙, 何晓兰, 陈志一, 倪万潮. 草地早熟禾农杆菌介导法基因转化条件. 草地学报, 2005, 13(1): 39-42.

She J M, Zhang B L, He X L, Chen Z Y, Ni W C. A Study on the conditions of genetic transformation into Poa pratensis L. by Agrobacterium tumefaciens. Acta Agrestia Sinica, 2005, 13(1): 39-42. (in Chinese)

[32]Salehi H, Seddighi Z, Kravchenko A N, Sticklen M B. Expression of the cry1Ac in 'Arizona Common' common bermudagrass via Agrobacterium-mediated transformation and control of black cutworm. Journal of the American Society for Horticultural Science, 2005, 130 (4): 619-623.

[33]Zhang L, Wu D, Zhang L, Yang C. Agrobacterium-mediated transformation of Japanese lawngrass (Zoysia japonica Steud.) containing a synthetic cryIA(b) gene from Bacillus thuringiensis. Plant Breeding, 2007, 126(4): 428-432.

[34]易自力, 陈智勇, 蒋建雄, 苏  晶, 储成才. 多年生黑麦草遗传转化体系的建立及其转化植株的获得. 草业学报, 2006, 15(4): 99-103.

Yi Z L, Chen Z Y, Jiang J X, Su J, Chu C C. Establishment of a transformation system and acquisition of transgenic plants for Lolium pernne. Acta Prataculturae Sinica, 2006, 15(4): 99-103. (in Chinese)

[35]Soo J K, Lee J Y, Kim Y M, Yang S S, Hwang O J, Hong N J, Kim K M, Lee H Y, Song P S, Kim J I. Agrobacterium–mediated high-efficiency transformation of Creeping Bentgrass with herbicide resistance. Journal of Plant Biology, 2007, 50(5): 577-585.

[36]Gao C X, Liu J X, Nielsen K K. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.). Plant Cell Reports, 2009, 28(9): 1431-1437.

[37]陈玉香, 周道玮. 转基因牧草研究进展.中国草地, 2005, 24(3): 59-63.

Chen Y X, Zhou D W. Progress in research on transgenic grass. Grassland of China, 2005, 24(3): 59-63. (in Chinese)

[38]Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang G H. Overexpression of barley hva1 gene in creeping ben tgrass for improving drought tolerance. Plant Cell Reports, 2007, 26(4): 467-477.

[39]Han L, Li X, Liu J, Zeng H. Drought-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained via particle bombardment gene transformation of CBF3/DREB1A gene. Acta Horticulturae, 2008, 783: 273-282.

[40]赵  彤, 于  荣, 黄丛林, 王永勤, 张秀海, 吴忠义. 高羊茅叶绿体表达载体构建及绿色荧光蛋白基因瞬时表达检测.中国农业科学, 2009, 42(3): 1116-1122.

Zhao T, Yu R, Huang C L, Wang Y Q, Zhang X H, Wu Z Y. Construction of tall fescue chloroplast expression vector and transient expression in tall fescue chloroplasts by detecting GFP. Scientia Agricultura Sinica, 2009, 42(3): 1116-1122. (in Chinese)

[41]魏  强, 宋贺玲, 向成斌, 蒯本科. 过量表达拟南芥 HD-START 转录因子 AtHDG11 提高黑麦草(Lolium perenne)抗旱性的初步研究. 植物生理学通讯, 2010, 46(11): 1140-1146.

Wei Q, Song H L, Xiang C B, Kuai B K. Preliminary Study on improving drought tolerance of ryegrass (Lolium perenne) by overexpressing a HD-START transcription factor AtHDG11 from Arabidopsis. Plant Physiology Communications, 2010, 46(11): 1140-1146. (in Chinese)

[42]Qi C H, Han L B, Liang X H, Zeng H M, Liu J. Transgenic Zoysia japonica plants obtained by biolistic bombardment transformation. Journal of Beijing Forestry University, 2006, 28(3): 71-75.

[43]Ma X, Sun Z, Jiang C, Dong Z, Zhang Y. Transfer DREB into Lolium perenne L. to improve its drought tolerance. High Technology Letters, 2006, 12 (4): 427-433.

[44]Zhao J S, Ren W, Zhi D, Wang L, Xia G. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Reports, 2007, 26 (9): 1521-1528.

[45]贾炜珑, 胡鸢雷, 张彦芹, 杨丽莉, 林忠平, 吴  锜. 海藻糖合酶基因转化黑麦草及耐旱性研究. 分子植物育种, 2007, 5(1): 27-31.

Jia W L, Hu Y L, Zhang Y Q, Yang L L, Lin Z P, Wu Q. Transformation of trehalose synthase gene (TPS gene) into perennial ryegrass and identify cation of drought tolerance. Molecular Plant Breeding, 2007, 5(1): 27-31. (in Chinese)

[46]杨凤萍, 梁荣奇, 张立全, 张晓东, 孙振元.抗逆调节转录因子DREB1B基因转化多年生黑麦草的研究. 西北植物学报, 2006, 26(7):1309-1315.

Yang F P, liang R Q, Zhang L Q, Zhang X D, Sun Z Y. Perennial ryegrass transformed with the adversity-resistant transcription factor DREB1B gene. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(7): 1309-1315. (in Chinese)

[47]李志亮, 黄丛林, 张秀海, 曹鸣庆, 李  征, 王  刚, 吴忠义. 利用基因枪法向高羊茅导入P5CS基因的研究. 园艺学报, 2005, 32(4): 653-657.

Li Z L, Huang C L, Zhang H X, Cao Q M, Li Z, Wang G, Wu Z Y. Studies on transferring P5CS gene into tall fescue(Festuca arundinacea Schreb.)via microprojectile bombardment. Acta Horticulturae Sinica, 2005, 32(4): 653-657. (in Chinese)

[48]王渭霞, 朱廷恒, 玄松南. 农杆菌介导的匍匐翦股颖胚性愈伤组织的转化和转CBF1基因植株的获得. 中国草地学报, 2006, 28(4): 59-64.

Wang W X, Zhu Y H, Xuan S N. Agrobactium-mediated transformation of embryogenic callus of creeping grass and obtaining CBF1 transgenic plants. Chinese Journal of Grassland, 2006, 28(4): 59-64. (in Chinese)

[49]张小芸, 何近刚, 孙学辉, 吴金霞. 转果聚糖合成关键酶基因多年生黑麦草的获得及抗旱性的提高. 草业学报, 2011, 20 (1): 111-118.

Zhang X Y, He J G, Sun X H, Wu J X. Transformation of Lolium perenne with a fructan:fructan 1-fructosyltransferase gene from Agropyron cristatum and enhancement of drought tolerance in transgenic plants. Acta Prataculturae Sinica, 2011, 20 (1): 111-118. (in Chinese)

[50]Tian L, Huang C, Yu R, Liang R, Li Z, Zhang L, Wang Y, Zhang X, Wu Z. Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. African Journal of Biotechnology, 2006, 5 (11): 1041-1044.

[51]徐  冰, 韩烈保, 姚  娜, 王瑶瑶, 程晓霞, 曾会明. 草地早熟禾转CMO-BADH双基因和转CMO基因耐盐性分析. 草地学报, 2008, 16(4): 353-358.

Xu B, Han L B, Yao N, Wang Y Y, Cheng X X, Zeng H M. Salt tolerance analysis of transgenic kentucky bluegrass with CMO-BADH double gene and CMO gene. Acta Agrestia Sinica, 2008, 16(4): 353-358. (in Chinese)

[52]Bao Y, Zhao R, Li F, Tang W, Han L B. Simultaneous expression of spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Molecular Biology Reporter, 2011 29 (2): 379-388.

[53]吴关庭, 陈锦清, 胡张华, 郎春秀, 陈笑芸, 王伏林, 金  卫, 夏英武. 根癌农杆菌介导转化获得耐逆性增强的高羊茅转基因植株.中国农业科学. 2005, 38(12): 2395-2402.

Wu G T, Chen J Q, Hu Z H, Lang C X, Chen X Y, Wang F L, Jin W, Xia Y W. Production of transgenic tall fescue plants with enhanced stress tolerance by Agrobacterium tumefaciens-Mediated transformation. Scientia Agricultura Sinica, 2005, 38(12): 2395-2402. (in Chinese)

[54]张  磊, 吴金霞, 董  芳, 梁  华, 叶兴国, 路铁刚, 赵  军. 抗逆转ABP9基因黑麦草和高羊茅植株的鉴定. 草业科学, 2010, 27(7): 72-77.

Zhang L, Wu J X, Dong F, Liang H, Ye X G, Lu T G, Zhao J. Identification of stress resistant transgenic ryegrass and tall fescue plants expressing ABP9 gene. Pratacultural Science, 2010, 27(7): 72-77. (in Chinese)

[55]Kim K H, Alam I ,Lee K W, Sharmin S A, Kwak S S, Lee S Y, Lee B H. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnology Letters, 2010, 32 (4): 571-576.

[56]张  晓, 杨丽莉, 杨晓玲. 转Leafy-ipt 基因高羊茅草生育后期SOD, POD, MDA的变化. 山西农业科学, 2008, 36(9): 26-28.

Zhang X, Yang L L, Yang X L. Changes of transgenic Leafy-ipt plants in tall fescue SOD, POD, MDA in the later growth stage. Journal of Shanxi Agricultural Sciences, 2008, 36(9): 26-28. (in Chinese)

[57]Li R F, Wei J H, Wang H Z, He J, Sun Z Y. Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Plant Cell Tissue and Organ Culture, 2006, 85(3): 297-305.

[58]赵  汝, 韩烈保, 曾会明. 铅胁迫下转DREB1A高羊茅对铅的吸收与耐受性研究. 中国草地学报, 2010, 32(2): 54-60.

Zhao R, Han L B, Zeng H M. Research on lead uptake and tolerance of tall fescue with foreign DREB1A under lead stress. Chinese Journal of Grassland, 2010, 32(2): 54-60. (in Chinese)

[59]Han Y J, Kim Y M, Lee J Y ,Kim S J, Cho K C, Chandrasekhar T, Song P S, WooY M, Kim J I. Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation. Plant Cell Reports, 2009, 28(3): 397-406.

[60]温常龙, 赵  冰, 杜建材, 山田敏彦, 郭仰东. 黑麦草与羊茅属间杂种研究进展. 中国农业科学, 2010, 43(7): 1346-1354.

Wen C L, Zhao B, Du J C, Yamada T, Guo Y D. Advances in research of Festulolium intergeneric hybrids. Scientia Agricultura Sinica, 2010, 43(7): 1346-1354. (in Chinese)

[61]Wang Z Y, Ye X D, Spangenberg G. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Reports, 2001, 20(3): 213-219.

[62]Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, Louie G V, Bowman M E, Smith K F, Noel J P, Mouradov A, Spangenberg G. Functional analyses of caffeic acid O-Methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell, 22 (10): 3357-3373.

[63]朱丽萍, 于  壮, 邹翠霞, 李秋莉. 植物逆境相关启动子及功能. 遗传, 2010, 32(3): 229-234.

Zhu L P, Yu Z, Zou C X, Li Q L. Plant stress-inducible promoters and their function. Hereditas, 2010, 32(3): 229-234. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[5] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[6] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[7] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[8] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[9] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[10] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[11] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[14] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[15] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!