Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (12): 2414-2420 .

• TILLAGE & CULTIVATION·PHYSIOLOGY & ECOLOGY • Previous Articles     Next Articles

Formation and Thickening of Tuberous Roots in Relation to the Endogenous Hormone Concentrations in Sweetpotato

,,   

  1. 山东农业大学农学院
  • Received:2005-04-20 Revised:1900-01-01 Online:2005-12-10 Published:2005-12-10

Abstract: A field trial was conducted to investigate the changes of endogenous hormone concentration during formation and thickening of tuberous roots in sweetpotato (Ipomoea batatas L.) of different genotypes (Xushu 18, Minamiyutaka and I .trifida-K123). The present results suggested that the concentrations of zeatin riboside (ZR), dihydro-zeatin riboside (DHZR), abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl-adenine (IPA) of Xushu 18 and Minamiyutaka were significantly higher than those of I.trifida-K123. Dry tuberous root yields were positively correlated with the concentrations of ABA, ZR and DHZR at 1% or 5% significant level, but not correlated with the concentrations of IAA, IPA and GA4. The concentrations of ABA, ZR and DHZR played very important roles for the tuberous roots formation and thickening in sweetpotato. The concentrations of ZR, DHZR, ABA and IAA in the top or inner parts of tuberous roots were significantly higher than those of in the end or outer parts. Meanwhile, endogenous hormone concentrations of big tuberous roots were significantly higher than that of middle or small ones at early thickening period. In fast thickening period of tuberous roots, endogenous hormone concentrations of middle tubers were the highest. However, at late thickening period, endogenous hormone concentrations of small tubers ranked the highest.

Key words: Sweet potato, Tuber, Endogenous Hormone concentration, Formation, Thickening

[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[3] ZHANG Jie,WANG Chuan,DONG XiaoXia,ZHU WenQi,YUE HuiLi,LIU ShengPing,ZHOU QingBo. Development and Application of Rapid Investigation and Analysis Platform for Agricultural and Rural Information Based on Fission Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4158-4174.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
[6] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[7] CAO XiaoChuang,WU LongLong,ZHU ChunQuan,ZHU LianFeng,KONG YaLi,LU RuoHui,KONG HaiMin,HU ZhaoPing,DAI Feng,ZHANG JunHua,JIN QianYu. Effects of Different Irrigation and Nitrogen Application Regimes on the Yield, Nitrogen Utilization of Rice and Nitrogen Transformation in Paddy Soil [J]. Scientia Agricultura Sinica, 2021, 54(7): 1482-1498.
[8] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[9] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[10] LI Xiang,ZHANG XiaoJiao,XIAO Chun,DONG WenXia. Electroantennogram Responses of Phthorimaea operculella of Different Sexes and Mating States to Potato Volatiles [J]. Scientia Agricultura Sinica, 2021, 54(3): 547-555.
[11] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[12] XIONG Yan,HAN Rui,HU ChunHua,WANG Jing,XIAO Chun. Influences of Chemical and Physical Stimuli on Oviposition Behavior of Phthorimaea operculella [J]. Scientia Agricultura Sinica, 2021, 54(3): 573-582.
[13] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[14] LIANG Wei,ZHU YaTong,CHAI XiuWei,KONG Rui,LI BinShan,LI YongCai,BI Yang,DOV Prusky. p-Coumaric Acid Promoted Wound Healing of Potato Tubers by Accelerating the Deposition of Suberin Poly Phenolic and Lignin at Wound Sites [J]. Scientia Agricultura Sinica, 2021, 54(20): 4434-4445.
[15] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!