Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1604-1616.doi: 10.3864/j.issn.0578-1752.2025.08.011

• HORTICULTURE • Previous Articles     Next Articles

Functional Analysis of MADS-box Transcription Factor Gene CaAGL61 in Heat Tolerance of Pepper

WANG MengYuan1(), WEI QianRui1, LI HaiYan1, YANG QiaoMin1, YU Jun2, HUANG Wei1(), LU MingHui1()   

  1. 1 College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi
    2 Xingping Agro-Tech Extension and Service Center, Xingping 713100, Shaanxi
  • Received:2024-09-24 Accepted:2024-11-14 Online:2025-04-16 Published:2025-04-21
  • Contact: HUANG Wei, LU MingHui

Abstract:

【Objective】 MADS-box transcription factors are one of the largest transcription factor families in plants, and play important roles in plant growth, development, and stress responses. Previously, based on transcriptome data of pepper, a heat-responsive gene, Agamous-like MADS-box protein61 (AGL61), was identified as a MADS-box transcription factor. However, the function of CaAGL61 in pepper heat stress remains unknown. In this study, we explored the molecular function of CaAGL61 in heat tolerance of pepper plants, providing the regulatory insights of CaAGL61 as a potential locus for genetic improvement. 【Method】 The SMART online tool was used to predict the conserved domain of CaAGL61, and a phylogenetic tree of AGL61 in pepper and other plant species was constructed using MEGA7. The expression pattern of CaAGL61 was analyzed by quantitative real-time PCR. The subcellular localization of CaAGL61 was examined in tobacco, and its transcriptional regulatory role was investigated using a yeast two-hybrid system (Y2H). The effects of CaAGL61 on heat tolerance of pepper were accessed using transgenic plants generated by virus-induced gene silencing (VIGS) and transient overexpression techniques.【Result】CaAGL61 encodes a protein of 179 amino acids, containing a MADS domain and exhibiting high evolutionary conservation. CaAGL61’s expressional level was relatively high in the flower of pepper, followed by the stem and fruit, and lowest in the root. Further analysis reveals that the expression of CaAGL61 increased along with flower maturation process, peaking in the anther during pollination and fruit setting. High temperature treatment at 45 ℃ significantly upregulates the expression of CaAGL61. Subcellular localization showed that CaAGL61 is located in the nucleus, and yeast transcriptional activation assays indicates that CaAGL61 has transcriptional activation activity. Silencing of CaAGL61 significantly enhances heat tolerance of pepper. Comparing with control, CaAGL61-silenced plants exhibit reduced wilting in plant growth points, lower relative electrolyte leakage, reduced content of malondialdehyde, and accumulation of dead cells and reactive oxygen species (ROS), and increased content of chlorophyll under heat stress. However, transient overexpression of CaAGL61 reduces the heat tolerance of pepper, indicated by more severe heat-stress damage, higher relative electrolyte leakage, increased content of malondialdehyde, and accumulation of dead cells and ROS, and decreased content of chlorophyll compared to control. 【Conclusion】A heat-responsive MADS-box transcription factor gene, CaAGL61, was identified in pepper. This gene negatively regulates pepper heat tolerance by exacerbating oxidative stress.

Key words: pepper, heat tolerance, MADS-box transcription factor, CaAGL61, negative regulation

Table 1

Sequences of PCR primers"

用途 Purpose 名称 Name 序列 Sequence (5′-3′)
亚细胞定位及基因过表达
Subcellular localization and
gene overexpression
pART27-GFP-CaAGL61-F GATGAACTATACAAAGAATTCATGCAAAATCTACTTGTTGAAG
pART27-GFP-CaAGL61-R CAGGACTCTAGATTAGGTACCCTAAGCAAACAAAGCTTGAAAA
基因沉默
Gene-silencing
TRV2:CaAGL61-F GCTCTAGAGTTCTCGTGTTGCCTCTATTG
TRV2:CaAGL61-R CGGGATCCGATGGTTCCGTGCATCTACTA
转录激活活性分析
Activity analysis of transcriptional activation
BD-CaAGL61-F ATGGCCATGGAGGCCGAATTCATGCAAAATCTACTTGTTGAAG
BD-CaAGL61-R CCGCTGCAGGTCGACGGATCCCTAAGCAAACAAAGCTTGAAAAG
基因表达分析
Analysis of gene expression
qCaAGL61-F GGCCTTATACCTGCGGAGAC
qCaAGL61-R GTCGAAGACCATCTCGACCC
qCaUbi3-F TGTCCATCTGCTCTCTGTTG
qCaUbi3-R CACCCCAAGCACAATAAGAC
qCaHsfA2-F GTAGCATCAGTAGCCACAGC
qCaHsfA2-R CAAGCAACTCTTCCCAAATA
qCaHsfA3-F CGAAAGTATGATGAAAGAAGAGG
qCaHsfA3-R ATAGTTGCCAAGACCACCC
qCaHsp70.1-F CAGGTGTGCTAGTTCAGGTGT
qCaHsp70.1-R TGACCTGAGGCACTCCTCTT

Fig. 1

Characterization of pepper CaAGL61 sequence A: Prediction of conservative domain; B: Analysis of phylogenetic relationship. Bolded in the figure shows AGL61 of pepper"

Fig. 2

Expression pattern analysis of CaAGL61 A: Expression in different tissues and organs of pepper; B: Expression in different parts of flower; C: Expression at different stages of flowering; D: Expression at different time points of heat stress. Different lowercase letters indicate the significant differences at P<0.05 level"

Fig. 3

Subcellular localization of CaAGL61 A: Subcellular localization of CaAGL61; B: DAPI staining. pART27-GFP: The negative control with empty vector; pART27-GFP-CaAGL61: The expression vector of CaAGL61. DAPI: Nuclear dye"

Fig. 4

Analysis of transcriptional activity of CaAGL61 pGBKT7-P53: The positive control; pGBKT7-empty: The negative control with empty vector; pGBKT7-CaAGL61: The expression vector of CaAGL61 gene"

Fig. 5

Phenotypic and silencing efficiency of CaAGL61-silenced peppers A: Phenotype of pepper seedlings with CaAGL61 gene-silenced; B: The silencing efficiency of CaAGL61. TRV2:00: The negative control seedlings with empty vector; TRV2:CaPDS: The positive control seedlings; TRV2:CaAGL61: Pepper seedlings with CaAGL61 gene-silenced. *: The significant difference at P<0.05 level. The same as below"

Fig. 6

Effects of CaAGL61-silencing on the heat tolerance of pepper A: Phenotype of peppers; B and C: Relative expression level of heat shock protein gene CaHSP70.1 and heat shock transcription factor gene CaHsfA3; D and E: Phenotype and total chlorophyll content of leaf round blades; F: Content of malondialdehyde (MDA) in pepper leaves; G: Relative conductivity of pepper leaves; H and I: Accumulation of dead cells in pepper leaves (trypan blue staining); J and K: Accumulation of reactive oxygen species (DAB staining). **: The significant difference at P<0.01 levels. The same as below"

Fig. 7

Effects of CaAGL61 transient-overexpression on the heat tolerance of pepper A: Relative expression level of CaAGL61; B: Phenotype of pepper plants; C and D: Relative expression level of heat shock transcription factor gene CaHsfA2 and heat shock protein gene CaHSP70.1; E and F: Phenotype and total chlorophyll content of leaf round blades; G: MDA (malondialdehyde) content in pepper leaves; H: Relative conductivity of pepper leaves; I and J: Accumulation of dead cells in pepper leaves (trypan blue staining); K and L: Accumulation of reactive oxygen species (DAB staining). pART27: The negative control seedlings with empty vector; pART27-CaAGL61: Pepper seedlings with CaAGL61 transient overexpression"

[1]
GUO M, YIN Y X, JI J J, MA B P, LU M H, GONG Z H. Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper (Capsicum annuum L.). Genetics and Molecular Research, 2014, 13(1): 1865-1875.
[2]
LI T, XU X W, LI Y, WANG H M, LI Z L, LI Z X. Comparative transcriptome analysis reveals differential transcription in heat- susceptible and heat-tolerant pepper (Capsicum annum L.) cultivars under heat stress. Journal of Plant Biology, 2015, 58(6): 411-424.
[3]
LIU F, XI M W, LIU T, WU X Y, JU L Y, WANG D J. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops, 2024, 1: 100005.
[4]
姚晓琳, 张晓芳, 王铮, 郝俊莹, 郑荣繁, 张沿政, 李帅. 大豆MADS-box基因功能研究进展. 植物遗传资源学报, 2024, 25(6): 909-918.

doi: 10.13430/j.cnki.jpgr.20231028001
YAO X L, ZHANG X F, WANG Z, HAO J Y, ZHENG R F, ZHANG Y Z, LI S. Research progress on MADS-box gene function in soybean. Journal of Plant Genetic Resources, 2024, 25(6): 909-918. (in Chinese)
[5]
ADHIKARI P B, KASAHARA R D. An overview on MADS box members in plants: A meta-review. International Journal of Molecular Sciences, 2024, 25(15): 8233.
[6]
ROY CHOUDHURY S, ROY S, NAG A, SINGH S K, SENGUPTA D N. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana. PLoS ONE, 2012, 7(9): e44361.
[7]
GOGOI M, BORCHETIA S, BANDYOPADHYAY T. Computational identification and analysis of MADS box genes in Camellia sinensis. Bioinformation, 2015, 11(3): 115-121.
[8]
GAN Z C, WU X X, BIAHOMBA S A M, FENG T T, LU X M, HU N B, LI R N, HUANG X Z. Genome-wide identification, evolution, and expression characterization of the pepper (Capsicum spp.) MADS-box gene family. Genes, 2022, 13(11): 2047.
[9]
DONG X, ZHANG L P, TANG Y H, YU D M, CHENG F, DONG Y X, JIANG X D, QIAN F M, GUO Z H, HU J Y. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. Plant Physiology, 2023, 192(1): 154-169.
[10]
HUANG N C, TIEN H C, YU T S. Arabidopsis leaf-expressed AGAMOUS-LIKE 24 mRNA systemically specifies floral meristem differentiation. New Phytologist, 2024, 241(1): 504-515.
[11]
BECHTOLD U, PENFOLD C A, JENKINS D J, LEGAIE R, MOORE J D, LAWSON T, MATTHEWS J S A, VIALET- CHABRAND S R M, BAXTER L, SUBRAMANIAM S, et al. Time-series transcriptomics reveals that AGAMOUS-LIKE 22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. The Plant Cell, 2016, 28(2): 345-366.
[12]
SZAKER H M, DARKÓ É, MEDZIHRADSZKY A, JANDA T, LIU H C, CHARNG Y Y, CSORBA T. miR824/AGAMOUS-LIKE 16 module integrates recurring environmental heat stress changes to fine-tune poststress development. Frontiers in Plant Science, 2019, 10: 1454.
[13]
CASTELÁN-MUÑOZ N, HERRERA J, CAJERO-SÁNCHEZ W, ARRIZUBIETA M, TREJO C, GARCÍA-PONCE B, DE LA PAZ SÁNCHEZ M, ÁLVAREZ-BUYLLA E R, GARAY-ARROYO A. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Frontiers in Plant Science, 2019, 10: 853.
[14]
LIN C Y, GUO X, YU X H, LI S X, LI W B, YU X L, AN F, ZHAO P J, RUAN M B. Genome-wide survey of the RWP-RK gene family in cassava (Manihot esculenta crantz) and functional analysis. International Journal of Molecular Sciences, 2023, 24(16): 12925.
[15]
HE S C, MA R, LIU Z J, ZHANG D, WANG S X, GUO Y, CHEN M X. Overexpression of BnaAGL11, a MADS-box transcription factor, regulates leaf morphogenesis and senescence in Brassica napus. Journal of Agricultural and Food Chemistry, 2022, 70(11): 3420-3434.
[16]
ZUO D, HU M Y, ZHOU W W, LEI F P, ZHAO J W, GU L. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. Plant Physiology and Biochemistry, 2023, 201: 107900.
[17]
ZHANG Y P, CAI W W, WANG A W, HUANG X Y, ZHENG X, LIU Q, CHENG X G, WAN M Y, LV J G, GUAN D Y, YANG S, HE S L. MADS-box protein AGL8 interacts with chromatin- remodelling component SWC4 to activate thermotolerance and environment-dependent immunity in pepper. Journal of Experimental Botany, 2023, 74(12): 3667-3683.
[18]
SINGH V K, MANGALAM A K, DWIVEDI S, NAIK S. Primer premier: program for design of degenerate primers from a protein sequence. BioTechniques, 1998, 24(2): 318-319.

doi: 10.2144/98242pf02 pmid: 9494736
[19]
刘瑞瑶, 黄国弘, 李海艳, 梁敏敏, 逯明辉. 辣椒CaHsfA2上游转录因子的筛选及耐热功能分析. 中国农业科学, 2022, 55(16): 3200-3209. doi: 10.3864/j.issn.0578-1752.2022.16.011.
LIU R Y, HUANG G H, LI H Y, LIANG M M, LU M H. Screening and functional analysis in heat-tolerance of the upstream transcription factors of pepper CaHsfA2. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209. doi: 10.3864/j.issn.0578-1752.2022.16.011. (in Chinese)
[20]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
[21]
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.

doi: 10.1093/molbev/msw054 pmid: 27004904
[22]
阎本涛, 焦可心, 赵悦, 杨巧敏, 陈涛, 逯明辉. 辣椒囊泡形成相关基因CaSec16耐热功能分析. 园艺学报, 2023, 50(11): 2387-2400.

doi: 10.16420/j.issn.0513-353x.2022-0996
YAN B T, JIAO K X, ZHAO Y, YANG Q M, CHEN T, LU M H. Analysis of heat-tolerant function of pepper vesicle formation related gene CaSec16. Acta Horticulturae Sinica, 2023, 50(11): 2387-2400. (in Chinese)
[23]
王晓立, 韩浩章, 江宇飞. 香樟黄化主要生理指标变化规律研究. 湖北农业科学, 2010, 49(3): 620-622.
WANG X L, HAN H Z, JIANG Y F. The study of main physiological variation patterns of Camphora etiolation. Hubei Agricultural Sciences, 2010, 49(3): 620-622. (in Chinese)
[24]
DIONISIO-SESE M L, TOBITA S. Antioxidant responses of rice seedlings to salinity stress. Plant Science, 1998, 135(1): 1-9.
[25]
STEWART R R, BEWLEY J D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 1980, 65(2): 245-248.

doi: 10.1104/pp.65.2.245 pmid: 16661168
[26]
陈冲, 刘双, 王丹丹, 池春玉, 朱宏, 金晓霞, 丁国华. 水杨酸诱导黄瓜PCD的鉴定及相关基因的表达分析. 华北农学报, 2018, 33(6): 56-63.

doi: 10.7668/hbnxb.2018.06.008
CHEN C, LIU S, WANG D D, CHI C Y, ZHU H, JIN X X, DING G H. Identification of PCD induced by salicylic acid and expression analysis of genes related with the PCD in cucumber. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 56-63. (in Chinese)
[27]
VANACKER H, CARVER T L W, FOYER C H. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiology, 2000, 123(4): 1289-1300.
[28]
张淮霞. 辣椒SBP-box基因在其响应疫霉菌侵染中的功能鉴定及调控机理的研究[D]. 杨凌: 西北农林科技大学, 2020.
ZHANG H X. Functional identification and regulation mechanism of pepper SBP-box gene in response to Phytophthora infestation[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[29]
张则婷, 李学宝. MADS-box基因在植物发育中的功能. 植物生理学通讯, 2007, 43(2): 218-222.
ZHANG Z T, LI X B. Function of MADS-box genes in plant development. Plant Physiology Communications, 2007, 43(2): 218-222. (in Chinese)
[30]
姚琦园, 李纷芬, 张林成, 周升恩. 植物MADS-box转录因子参与调控非生物胁迫的研究进展. 江西农业学报, 2018, 30(5): 73-79.
YAO Q Y, LI F F, ZHANG L C, ZHOU S E. Research progress in MADS-box transcription factors involved in regulation of abiotic stress of plants. Acta Agriculturae Jiangxi, 2018, 30(5): 73-79. (in Chinese)
[31]
YANG Z F, NIE G, FENG G Y, XU X H, LI D D, WANG X, HUANG L K, ZHANG X Q. Genome-wide identification of MADS-box gene family in orchardgrass and the positive role of DgMADS114 and DgMADS115 under different abiotic stress. International Journal of Biological Macromolecules, 2022, 223(Pt A): 129-142.
[32]
CHEN C, BEGCY K, LIU K, FOLSOM J J, WANG Z, ZHANG C, WALIA H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiology, 2016, 171(1): 606-622.

doi: 10.1104/pp.15.01992 pmid: 26936896
[33]
YAO Q, LI P, WANG X, LIAO S H, WANG P, HUANG S B. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. Plant Communications, 2024, 5(9): 101009.
[34]
STEFFEN J G, KANG I H, PORTEREIKO M F, LLOYD A, DREWS G N. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiology, 2008, 148(1): 259-268.
[35]
CHATURVEDI P, WIESE A J, GHATAK A, DRÁBKOVÁ L Z, WECKWERTH W, HONYS D. Heat stress response mechanisms in pollen development. New Phytologist, 2021, 231(2): 571-585.

doi: 10.1111/nph.17380 pmid: 33818773
[36]
SAN TOH S, CHEN Z H, ROUCHKA E C, SCHULTZ D J, CUOMO C A, PERLIN M H. Pas de deux: An intricate dance of anther smut and its host. G3, 2018, 8(2): 505-518.
[37]
BAKERY A, VRAGGALAS S, SHALHA B, CHAUHAN H, BENHAMED M, FRAGKOSTEFANAKIS S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. New Phytologist, 2024, 244(1): 51-64.
[38]
ZHAO P X, MIAO Z Q, ZHANG J, CHEN S Y, LIU Q Q, XIANG C B. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. Journal of Experimental Botany, 2020, 71(19): 6092-6106.
[39]
李翠, 侯蕾, 任丽, 张烨, 郑奕雄, 王兴军. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析. 山东农业科学, 2015, 47(4): 1-7.
LI C, HOU L, REN L, ZHANG Y, ZHENG Y X, WANG X J. Cloning and expression analysis of AhHSP70 and ah HSF genes in Arachis hypogaea L.. Shandong Agricultural Sciences, 2015, 47(4): 1-7. (in Chinese)
[1] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[2] LIU Jing, WANG Hong, ZHANG Lei, XIAO JiuJun, WU JianGao, GONG MingChong. Inversion of Nitrogen Content in Chili Pepper Leaves Based on Hyperspectral Analysis [J]. Scientia Agricultura Sinica, 2025, 58(2): 252-265.
[3] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[4] LU Lu, LI YiNuo, ZHANG XiuGuo, GAO DanMei, WU FengZhi. Effects of Wheat and Broad Bean Catch Crop and Their Decomposed Liquids on the Growth and Blight of Continuous Cropping Pepper Seedlings [J]. Scientia Agricultura Sinica, 2024, 57(22): 4541-4552.
[5] HE Yong, FAN XiaoZhu, CHEN XinYue, DUAN ShuJing, HU TingTing, XIE RuXue, WANG YuQing, CHEN Jing. Screening and Verification of Pepper Host Factors Interacting with the 126 kDa Protein of Pepper Mild Mottle Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(15): 2986-2996.
[6] GAO ChengAn, WAN HongJian, YE QingJing, CHENG Yuan, LIU ChenXu, HE Yong. Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(12): 2424-2438.
[7] ZHOU DaoMing, SUN Tao, ZHAO YuHong, JIA YuanJie, YANG MingFei, QU Feng, HU XiaoHui. Optimization of Water and Fertilizer Management of Substrate Cultivated Peppers Based on Quality, Yield, and Water and Fertilizer Use Efficiency [J]. Scientia Agricultura Sinica, 2023, 56(12): 2354-2366.
[8] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[9] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[10] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[11] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[12] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[13] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[14] ZHANG BaoXi,WANG LiHao,ZHANG ZhengHai,CAO YaCong,YU Hailong. Development of New Varieties of ZHONGJIAO Pepper Resistant to Pepper Mild Mottle Virus Using L 3Gene [J]. Scientia Agricultura Sinica, 2020, 53(18): 3846-3855.
[15] TANG YaFei,PEI Fan,LI ZhengGang,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Identification of Viruses Infecting Peppers in Guangdong by Small RNA Deep Sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!