Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1591-1603.doi: 10.3864/j.issn.0578-1752.2025.08.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield

LI ShaoXing(), SONG WenFeng(), WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang()   

  1. College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715
  • Received:2024-07-09 Accepted:2024-09-19 Online:2025-04-16 Published:2025-04-21
  • Contact: WANG LongChang

Abstract:

【Objective】 This study aimed to explore the effects of straw and green manure mulching on soil fertility and crop yield on the dryland in southwest China, so as to provide the theoretical basis and practical guidance for exploring reasonable, efficient and ecologically healthy conservation tillage measures in southwest China. 【Method】 The sweet potato field in the "broad bean/maize/sweet potato" dry three-crop intercropping mode in southwest China was selected as the research object, and four treatments were set up: no mulching (CK), straw mulching (S), straw and milk vetch mulching (S+M), and milk vetch mulching (M). The effects of different treatments on soil characteristics and soil fertility, sweet potato dry matter content in the sweet potato field were studied. 【Result】(1) Compared with no-mulching treatment, straw and milk vetch mulching could improve the physical and chemical properties and biological characteristics of soil in sweet potato field. Among them, straw and milk vetch mulching had the best effect. (2) The comprehensive evaluation of soil fertility based on principal component analysis showed that soil fertility under straw and milk vetch mulching treatment was higher than that under no mulching treatment, and the comprehensive scores of straw and milk vetch mulching treatment were the highest in both rhizosphere and non-rhizosphere soil. (3) S+M treatment significantly improved the dry matter quality of various organs of sweet potato and sweet potato yield, the yield of sweet potato under S+M, S and M treatment was 34.53%, 14.60% and 11.55% higher than that under CK treatment, respectively.【Conclusion】Straw and milk vetch mulching in the dryland, triple cropping systems of southwest China, could effectively improve the physical and chemical properties and biological characteristics of soil, enhance soil fertility, and improve dry matter quality and yield.

Key words: straw mulching, milk vetch mulching, soil fertility, sweet potato (Ipomoea batatas L.), yield

Table 1

Treatment and operation methods of different biological coverage"

处理Treatment 操作方法Method of operation
对照CK 地表无覆盖Uncovered land
秸秆覆盖S 当季作物播种或移栽后,将前茬作物秸秆用铡刀切成20 cm左右长度并均匀覆盖在整个小区内,蚕豆、玉米秸秆覆盖量为7 500 kg·hm-2(风干重),甘薯秸秆覆盖量为4 500 kg·hm-2(风干重)
After planting or transplantation of crops in the current season, straw of the previous crops were cut into a length of about 20 cm by fodder chopper and evenly covered in the whole plot. The straw cover amount of fava bean and corn were 7 500 kg·hm-2 (air dry weight), and the straw cover amount of sweet potato was 4 500 kg·hm-2 (air dry weight)
紫云英覆盖M 在蚕豆生育期内间作紫云英,紫云英于盛花期收获并切碎,在玉米移栽后均匀覆盖在整个小区内,覆盖量为2 500 kg·hm-2(风干重)
During the growth period of fava bean, harvest and chop the milk vetch in full-blossom period, evenly covered in the whole plot after corn was transplanted, and the cover amount is 2 500 kg·hm-2 (air dry weight)
秸秆+紫云英覆盖S+M 秸秆覆盖量和覆盖方法同S处理,紫云英覆盖量和覆盖方法同M处理
The mulching amount and mulching method of straw and milk vetch are the same as S and M treatment

Table 2

Soil physical and chemical properties at sweet potato maturity stage"

土区
Soil area
处理
Treatment
电导率
Dynamic
(μS·cm-1)
易氧化有机碳
Soil readily oxidizable organic carbon (g·kg-1)
硝态氮
Nitrate
nitrogen (mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
有机碳
Organic
carbon
(g·kg-1)
全氮
Total
nitrogen
(g·kg-1)
全磷
Total phosphorus (mg·kg-1)
根际土壤
Rhizosphere
CK 5.15±0.07a 1.41±0.0978c 4.89±0.070b 23.16±0.679a 11.055±0.258a 0.732±0.033b 0.716±0.022a
S 5.54±0.13a 2.47±0.067a 6.52±0.217a 24.07±0.698a 11.844±0.118a 0.800±0.0114a 0.722±0.014a
S+M 5.25±0.13a 2.28±0.060a 6.06±0.201ab 25.37±0.622a 11.596±0.310a 0.806±0.010a 0.714±0.004a
M 5.10±0.24a 1.93±0.059b 5.94±0.695ab 25.10±0.677a 11.192±0.234a 0.8273±0.014a 0.726±0.014a
非根际土壤
Non-rhizosphere
CK 4.23±0.18c 1.72±0.055b 3.51±0.327c 28.85±0.573b 12.211±0.103c 0.9227±0.004b 0.806±0.019b
S 5.91±0.05a 2.41±0.076ab 6.28±0.476b 29.88±0.497b 13.119±0.073b 1.0607±0.018a 0.835±0.023ab
S+M 6.12±0.07a 2.60±0.264a 8.14±0.413a 33.55±0.844a 14.381±0.171a 1.132±0.039a 0.852±0.018a
M 5.01±0.08b 2.03±0.297ab 5.59±0.412b 30.76±0.364b 12.913±0.197b 0.964±0.005b 0.837±0.010ab

Table 3

Soil enzyme activity at sweet potato maturity stage"

土区
Soil area
处理
Treatment
蔗糖酶
Invertase (mg·kg-1·24h-1)
脲酶
Urease (mg·kg-1·24h-1)
酸性磷酸酶
Acid phosphatase (mg·kg-1·24h-1)
根际土壤
Rhizosphere
CK 5.595±0.097a 0.292±0.00b 0.325±0.0036b
S 5.442±0.135a 0.324±0.0020a 0.374±0.0037a
S+M 5.993±0.180a 0.322±0.0025a 0.372±0.0095a
M 5.872±0.443a 0.322±0.0047a 0.368±0.0026a
非根际土壤
Non-rhizosphere
CK 7.601±0.117b 0.327±0.0041c 0.468±0.0048c
S 8.440±0.069a 0.343±0.0004b 0.491±0.0053b
S+M 8.403±0.148a 0.355±0.0028b 0.521±0.0042a
M 8.186±0.083a 0.374±0.0062a 0.503±0.0098ab

Fig. 1

Average well color development of soil microbial carbon source utilization"

Table 4

120 h microbial diversity index"

处理
Treatment
平均颜色变化率
AWCD
Shannon多样性指数
H
Pielou均匀度指数
J
Simpson优势度指数
D
Mclntosh多样性指数
U
CK 0.9466±0.0544a 3.3370±0.0287a 0.9879±0.0016b 0.9631±0.0012a 5.6276±0.2352a
S 0.9588±0.0578a 3.3262±0.0295a 0.9879±0.0030b 0.9624±0.0016a 5.7503±0.2344a
S+M 0.9918±0.0312a 3.3531±0.0096a 0.9993±0.0024a 0.9638±0.0004a 5.8477±0.1505a
M 0.987±0.01618a 3.3273±0.0263a 0.9953±0.0013a 0.9628±0.0011a 5.8958±0.0762a

Fig. 2

Relative utilization percentage of the six types of carbon sources by microorganisms"

Fig. 3

Hierarchical clustering heat map of 31carbon source utilization by soil microorganisms under different treatments A is carbohydrate carbon source, A1-A11 are D-Cellobiose, α-D-Lactose, β-Methyl-D-Glucoside, D-Xylose, i-Erythritol, D-Mannitol, N-Acetyl-D Glucosamine, 1-Phosphate Glucose, D,L-α-Phosphoglycerol, D-Galactose Acid-γ-Lactone, respectively; B is amino acid carbon source, B1-B6 are L-Arginine, L-Asparagine, L-Phenylalamine, L-Serine, L-Threomine, Glycose-L-Glutamic Acid, respectively; C is carboxylic acids carbon source, C1-C7 are Pyruvic Acid Methyl Eester, D-Glucosaminic Acid, D-Galacturonic Acid, γ-Hydroxybutyric Acid, Itaconic Acid, α-Ketobutyric Acid, D-Malic Acid, respectively; D is amines carbon source, D1-D2 are Phenylethylamine and Putrescine; E is phenolic acid carbon source, E1-E2 are 2-Hydroxy-Benzoic Acid and 4-Hydroxy-Benzoic Acid; F is polymers carbon source, F1-F4 are Tween-40, Tween-80, α-Cyclodextrin and Glycogen, respectively"

Fig. 4

Principal component analysis of soil fertility"

Table 5

Comprehensive scores of soil fertility in different treatments"

土区
Soil area
处理
Treatment
主成分1
PC1
主成分2
PC2
总得分
Total score
排名
Ranking
根际
Rhizosphere
CK -0.438392723 -0.876785447 -1.31517817 4
S 0.17178853 0.34357706 0.51536559 2
S+M 0.177319573 0.354639147 0.53195872 1
M 0.0892864 0.1785728 0.2678592 3
非根际
Non-rhizosphere
CK -0.507529085 -1.01505817 -1.522587255 4
S 0.033098995 0.06619799 0.099296985 3
S+M 0.4125221 0.8250442 1.2375663 1
M 0.06190933 0.12381866 0.18572799 2

Table 6

Dry matter weight of sweet potato organs"

生育天数
Growth days (d)
处理
Treatment

Root (g)

Stem (g)

Leaf (g)
叶柄
Petiole (g)
根冠比
R/T
30 CK 1.59±0.24ab 5.03±0.13c 5.21±0.16c 3.60±0.16b 0.11±0.02a
S 1.13±0.17b 5.70±0.25bc 6.20±0.32bc 3.88±0.37b 0.07±0.01b
S+M 2.18±0.24a 7.40±0.53a 8.29±0.82a 5.62±0.59a 0.10±0.01ab
M 1.56±0.12ab 6.51±0.56ab 7.16±0.38ab 5.26±0.27a 0.08±0.01ab
60 CK 27.65±5.84a 20.12±1.25a 16.73±1.53b 12.22±1.36b 0.56±0.10a
S 31.22±5.56a 23.80±1.37a 18.11±1.05ab 13.98±1.33ab 0.56±0.10a
S+M 37.30±2.05a 26.90±0.81a 23.99±1.97a 18.31±1.62a 0.54±0.01a
M 40.71±2.86a 25.34±3.51a 22.46±2.22ab 16.43±1.56ab 0.64±0.04a
90 CK 104.74±14.45a 48.46±3.38a 36.02±3.95a 22.84±2.33a 0.97±0.08a
S 103.00±13.49a 54.78±2.22a 34.33±2.07a 20.15±0.72a 0.95±0.14a
S+M 97.81±7.58a 61.31±5.95a 40.47±3.35a 23.11±1.35a 0.78±0.01a
M 80.05±12.35a 56.96±5.73a 37.43±1.93a 23.07±2.01a 0.68±0.08a
120 CK 137.54±14.52a 69.48±1.89a 31.86±2.63ab 23.67±1.40ab 1.11±0.14a
S 172.82±7.40a 76.55±12.51a 25.25±3.07b 19.58±0.78b 1.48±0.22a
S+M 175.27±10.69a 76.21±5.08a 38.29±4.87a 29.71±3.14a 1.24±0.16a
M 139.93±18.42a 63.41±6.70a 26.86±1.49b 20.93±1.43b 1.27±0.16a
150 CK 180.14±14.31b 53.25±5.54b 20.44±1.57c 16.87±1.09b 1.83±0.29a
S 240.98±17.92ab 71.47±8.98ab 30.72±3.71ab 24.44±2.36ab 1.94±0.24a
S+M 316.59±44.13a 84.00±3.69a 35.75±2.65a 27.79±2.04a 2.16±0.34a
M 197.16±6.98b 57.98±5.91b 24.63±2.80bc 18.11±3.33b 2.01±0.24a

Fig. 5

Yield of sweet potato in different treatments"

Fig. 6

Correlation analysis of soil factors and sweet potato yield * Indicates that the correlation between the indicators reaches a significant level (P<0.05). EC, ROC, NO3--N, AP, Sucrase, Urease, ACPase, SOC, TN, TP, Yield are dynamic, soil readily oxidizable organic carbon, nitrate nitrogen, available phosphorus, invertase, urease, acid phosphatase, organic carbon, total nitrogen, total phosphorus and yield, respectively"

[1]
林子雁, 肖燚, 史雪威, 饶恩明, 张平, 王莉雁. 西南地区生态重要性格局研究. 生态学报, 2018, 38(24): 8667-8675.
LIN Z Y, XIAO Y, SHI X W, RAO E M, ZHANG P, WANG L Y. Assessment of the ecological importance patterns in southwest China. Acta Ecologica Sinica, 2018, 38(24): 8667-8675. (in Chinese)
[2]
王龙昌. 农业可持续发展理论与实践. 北京: 科学出版社, 2015: 273-275.
WANG L C. Sustainable Development of Agriculture Theory and Practice. Beijing: Science Press, 2015: 273-275. (in Chinese)
[3]
朱钟麟, 赵燮京, 王昌桃, 侯鲁川. 西南地区干旱规律与节水农业发展问题. 生态环境, 2006, 15(4): 876-880.
ZHU Z L, ZHAO X J, WANG C T, HOU L C. The rules of drought and the development of water-saving agriculture in southwest China. Ecology and Environmental Sciences, 2006, 15(4): 876-880. (in Chinese)
[4]
高岩红, 瞿雪梅, 梁颖涛, 慈恩, 谢德体. 渝西南典型区农田表层土壤有机碳库研究. 西南大学学报(自然科学版), 2014, 36(5): 120-126.
GAO Y H, QU X M, LIANG Y T, CI E, XIE D T. Study on soil organic carbon pool of topsoil in farmland in a typical area of southwestern Chongqing. Journal of Southwest University (Natural Science Edition), 2014, 36(5): 120-126. (in Chinese)
[5]
杜文鹏, 闫慧敏, 甄霖, 胡云锋. 西南岩溶地区石漠化综合治理研究. 生态学报, 2019, 39(16): 5798-5808.
DU W P, YAN H M, ZHEN L, HU Y F. The experience and practice of desertification control in Karst region of southwest China. Acta Ecologica Sinica, 2019, 39(16): 5798-5808. (in Chinese)
[6]
CHOUDHURY B U, NENGZOUZAM G, ISLAM A. Runoff and soil erosion in the integrated farming systems based on micro-watersheds under projected climate change scenarios and adaptation strategies in the eastern Himalayan Mountain ecosystem (India). Journal of Environmental Management, 2022, 309: 114667.
[7]
KADER M A, SENGE M, MOJID M A, ITO K. Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 2017, 168: 155-166.
[8]
SHARMA A R, SINGH R, DHYANI S K, DUBE R K. Moisture conservation and nitrogen recycling through legume mulching in rainfed maize (Zea mays)-wheat (Triticum aestivum) cropping system. Nutrient Cycling in Agroecosystems, 2010, 87(2): 187-197.
[9]
戴伊莎, 成欣, 刘帮艳, 何鲜, 胡梦阳, 杨武魁, 王龙昌, 武海燕, 李茜, 吴进红. 秸秆和紫云英协同覆盖对西南旱地土壤养分、酶活性及小麦产量的影响. 土壤通报, 2021, 52(6): 1339-1347.
DAI Y S, CHENG X, LIU B Y, HE X, HU M Y, YANG W K, WANG L C, WU H Y, LI Q, WU J H. Impacts of synergistic mulching of straw and milk vetch on soil nutrients, enzyme activities and wheat yield in upland of southwest China. Chinese Journal of Soil Science, 2021, 52(6): 1339-1347. (in Chinese)
[10]
HAYWOOD J D. Durability of selected mulches, their ability to control weeds, and influence growth of loblolly pine seedlings. New Forests, 1999, 18(3): 263-276.
[11]
李淑英, 路献勇, 程福如, 闫晓明, 郑曙峰, 马艳. 油-棉连作棉田油菜秸秆覆盖对棉田杂草发生及土壤杂草种子库的动态影响. 中国农学通报, 2020, 36(9): 138-144.

doi: 10.11924/j.issn.1000-6850.casb18110084
LI S Y, LU X Y, CHENG F R, YAN X M, ZHENG S F, MA Y. Dynamic influence of rapeseed straw mulching on weed occurrence and weed seed bank in cotton field under rape-cotton continuous cropping system. Chinese Agricultural Science Bulletin, 2020, 36(9): 138-144. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb18110084
[12]
ZHANG Z S, CAO C G, GUO L J, LI C F. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields. The Scientific World Journal, 2014, 2014: 198231.
[13]
GHOLAMI L, SADEGHI S H, HOMAEE M. Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots. Soil Science Society of America Journal, 2013, 77(1): 268-278.
[14]
SARKAR S, SKALICKY M, HOSSAIN A, BRESTIC M, SAHA S, GARAI S, RAY K, BRAHMACHARI K. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 2020, 12(23): 9808.
[15]
CHAKRABORTY B, KUNDU M, CHATTOPADHYAY R N. Organic farming with bio-mulching-A new paradigm for sustainable leaf yield & quality of mulberry (Morus alba L.) under rainfed lateritic soil condition. Agriculture and Agricultural Science Procedia, 2016, 11: 31-37.
[16]
CHAKRABORTY D, NAGARAJAN S, AGGARWAL P, GUPTA V K, TOMAR R K, GARG R N, SAHOO R N, SARKAR A, CHOPRA U K, SUNDARA SARMA K S, KALRA N. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural Water Management, 2008, 95(12): 1323-1334.
[17]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agriculture Science and Technology Press, 2000. (in Chinese)
[18]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[19]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agricultural Press, 1986. (in Chinese)
[20]
TABATABAI M A. Methods of soil analysis: Part 2 Microbiological and biochemical properties. Soil Enzymes, 1994, 5: 775-833.
[21]
赵倩, 任广伟, 王杰, 王新伟, 韦建玉, 王晓强, 卢燕回, 陈信, 王静. 施用韩国假单胞菌(Pseudomonas koreensis) CLP-7对连作烟田土壤质量及微生物群落功能多样性的影响. 生态学报, 2020, 40(15): 5357-5366.
ZHAO Q, REN G W, WANG J, WANG X W, WEI J Y, WANG X Q, LU Y H, CHEN X, WANG J. Effects of adding Pseudomonas koreensis CLP-7 on soil quality and soil microbial community functional diversity in continuous cropping tobacco fields. Acta Ecologica Sinica, 2020, 40(15): 5357-5366. (in Chinese)
[22]
李春杰, 郎鸣晓, 陈振江, 陈泰祥, 刘静, 金媛媛, 魏学凯. Epichloë内生真菌对禾草种子萌发影响研究进展. 草业学报, 2022, 31(3): 192-206.

doi: 10.11686/cyxb2020601
LI C J, LANG M X, CHEN Z J, CHEN T X, LIU J, JIN Y Y, WEI X K. Effects of Epichloë endophytic fungi on the germination of grass seeds. Acta Prataculturae Sinica, 2022, 31(3): 192-206. (in Chinese)
[23]
郭银花, 赵洪涛, 高雨, 沈颖, 周志勇. 山西太岳山油松林无机氮添加对土壤微生物养分限制类型的影响. 应用与环境生物学报, 2022, 28(1): 137-144.
GUO Y H, ZHAO H T, GAO Y, SHEN Y, ZHOU Z Y. Effect of inorganic nitrogen addition on soil microbial nutrient requirement strategy in the Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province. Chinese Journal of Applied and Environmental Biology, 2022, 28 (1): 137-144. (in Chinese)
[24]
龚小雅, 石记博, 方凌, 方亚鹏, 吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响. 中国农业科学, 2022, 55(12): 2472-2484. doi: 10.3864/j.issn.0578-1752.2022.12.017.
GONG X Y, SHI J B, FANG L, FANG Y P, WU F Z. Effects of flooding on soil chemical properties and microbial community composition on farmland of continuous cropped pepper. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484. doi: 10.3864/j.issn. 0578-1752.2022.12.017. (in Chinese)
[25]
EDMEADES D C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutrient Cycling in Agroecosystems, 2003, 66(2): 165-180.
[26]
刘禹池, 冯文强, 秦鱼生, 曾祥忠, 周相玉, 王昌全, 涂仕华. 长期秸秆还田与施肥对成都平原稻-麦轮作下作物产量和土壤肥力的影响. 西南农业学报, 2015, 28(1): 240-247.
LIU Y C, FEN W Q, QIN Y S, ZENG X Z, ZHOU X Y, WANG C Q, TU S H. Effects of long-term fertilization and straw mulch on crop yields and soil fertility under rice-wheat rotation in Chengdu plain. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 240-247. (in Chinese)
[27]
李峰, 周方亮, 黄雅楠, 徐永昊, 耿明建, 黄丽. 紫云英和秸秆还田对土壤肥力性状的影响. 中国土壤与肥料, 2020(3): 75-81.
LI F, ZHOU F L, HUANG Y N, XU Y H, GENG M J, HUANG L. Effects of Chinese milk vetch and straw returning on soil fertility characters. Soil and Fertilizer Sciences in China, 2020(3): 75-81. (in Chinese)
[28]
黄冬琳, 同斯捷, 岳良, 李彦, 张雪辰, 郑伟, 王朝辉, 张绪成, 翟丙年, 李紫燕. 原位酶谱技术分析旱地长期覆盖下根际酶活性空间分布. 农业工程学报, 2022, 38(5): 123-130.
HUANG D L, TONG S J, YUE L, LI Y, ZHANG X C, ZHENG W, WANG Z H, ZHANG X C, ZHAI B N, LI Z Y. Spatial distribution of enzyme activities in rhizosphere soil under long-term mulching of dryland with in situ zymography. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 123-130. (in Chinese)
[29]
FARMER J, ZHANG B, JIN X X, ZHANG P, WANG J K. Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing. Archives of Agronomy and Soil Science, 2017, 63(2): 230-241.
[30]
范君华, 刘明, 张建华, 贺江舟. 南疆膜下滴灌棉田土壤酶活性与土壤养分的关系. 棉花学报, 2010, 22(4): 367-371.

doi: 10.11963/cs100412
FAN J H, LIU M, ZHANG J H, HE J Z. Relationship between soil enzymatic activities and soil nutrients in cotton field under film irrigation in South Xinjiang. Cotton Science, 2010, 22(4): 367-371. (in Chinese)
[31]
刘威, 耿明建, 秦自果, 张智, 鲁君明, 鲁剑巍, 曹卫东. 种植绿肥与稻秸协同还田对单季稻田土壤有机碳库和酶活性的影响. 农业工程学报, 2020, 36(7): 125-133.
LIU W, GENG M J, QIN Z G, ZHANG Z, LU J M, LU J W, CAO W D. Effects of co-incorporation of green manure planting and rice straw on soil organic carbon pool and soil enzyme activity in a mono-rice cropping system. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 125-133. (in Chinese)
[32]
杨苏, 刘耀斌, 章欢, 李辉信, 张永春, 艾玉春, 汪吉东. 土壤不同形态碳氮含量和酶活性对培养时间及外源碳投入的响应. 水土保持学报, 2020, 34(4): 340-346.
YANG S, LIU Y B, ZHANG H, LI H X, ZHANG Y C, AI Y C, WANG J D. Responses of different forms of soil carbon and nitrogen contents and enzyme activities to cultivation time and exogenous carbon input. Journal of Soil and Water Conservation, 2020, 34(4): 340-346. (in Chinese)
[33]
JIANG L L, HAN G M, LAN Y, LIU S N, GAO J P, YANG X, MENG J, CHEN W F. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. Journal of Integrative Agriculture, 2017, 16(3): 713-724.
[34]
韦安培, 丁文超, 胡恒宇, 隋业伟, 刘少梅, 陈子明, 李静. 耕作方式及秸秆还田对土壤性质、微生物碳源代谢及小麦产量的影响. 干旱地区农业研究, 2019, 37(6): 145-152.
WEI A P, DING W C, HU H Y, SHUI Y W, LIU S M, CHEN Z M, LI J. Effects of tillage methods and straw return on soil properties, metabolism of microbial carbon source and wheat yield. Agricultural Research in the Arid Areas, 2019, 37(6): 145-152. (in Chinese)
[35]
田宁, 黄雪梅, 陈龙池, 黄苛, 陶晓. 施石灰对杉木人工林土壤呼吸及其温度敏感性的影响. 应用生态学报, 2023, 34(5): 1194-1202.

doi: 10.13287/j.1001-9332.202305.011
TIAN N, HUANG X M, CHEN L C, HUANG K, TAO X. Effects of liming on soil respiration and its sensitivity to temperature in Cunninghamia lanceolata planta-tions. Chinese Journal of Applied Ecology, 2023, 34(5): 1194-1202. (in Chinese)
[36]
YANG H K, WU G, MO P, CHEN S H, WANG S Y, XIAO Y, MA H A, WEN T, GUO X, FAN G Q. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil and Tillage Research, 2020, 197: 104485.
[37]
KAUR J, MAHAL S S. Influence of paddy straw mulch on crop productivity and economics of bed and flat sown wheat (Triticum aestivum) under different irrigation schedules. Journal of Environmental Biology, 2017, 38(2): 243-250.
[38]
LI Z X, ZHANG Q Y, LI Z, QIAO Y F, DU K, TIAN C, ZHU N, LENG P F, YUE Z W, CHENG H F, CHEN G, LI F D. Effects of straw mulching and nitrogen application rates on crop yields, fertilizer use efficiency, and greenhouse gas emissions of summer maize. The Science of the Total Environment, 2022, 847: 157681.
[39]
YAO Y P, XU Z, LIU Y H, MENG S. Comparing carbon and nutrient allocations among the different organs of plants Suaeda salsa between two typically coastal wetlands, China. Regional Studies in Marine Science, 2023, 58: 102796.
[1] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[2] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[3] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[4] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[5] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[6] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[7] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[8] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[9] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[10] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[11] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[12] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[13] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[14] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[15] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!