Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1479-1493.doi: 10.3864/j.issn.0578-1752.2025.08.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton

WANG WeiMeng1,2(), WEI YunXiao2, TANG YunNi2, LIU MiaoMiao2, CHEN QuanJia1, DENG XiaoJuan1(), ZHANG Rui2()   

  1. 1 College of Agronomy, Xinjiang Agricultural University/Engineering Research Center for Cotton, Ministry of Education, Urumqi 830052
    2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2024-09-26 Accepted:2024-11-23 Online:2025-04-16 Published:2025-04-21
  • Contact: DENG XiaoJuan, ZHANG Rui

Abstract:

【Background】 Cotton is one of the most important crops globally. The application of bioengineering technology has greatly improved the efficiency of molecular breeding. However, current cotton genetic transformation faces challenges such as genotype dependency, lengthy timelines, and limited transformation methods.【Objective】This study aims to establish an efficient Agrobacterium rhizogenes-mediated genetic transformation system for cotton to expand genetic breeding methodologies.【Method】Using the common cotton receptor varieties WC and R18 as primary materials and mRUBY as a reporter gene, the root inducing process mediated by A. rhizogenes was optimized through screening hormone combinations (types and concentrations), analyzing differences in explant types and genotype-specific rooting systems. A stable genetic transformation system was subsequently developed and applied to gene editing.【Result】The addition of naphthaleneacetic acid (NAA) and lovastatin to the root inducing medium (RIM) promoted more efficient root formation compared to NAA alone or combinations of NAA+indole-3-butyric acid (IBA) or NAA+Lovastatin+IBA. The optimal concentrations for inducing hairy roots were both 2 mg·L-1 for NAA and lovastatin. Cotyledons were the most effective explants for root induction: WC cotyledons, cotyledon nodes, and hypocotyls exhibited rooting efficiencies of 398%, 72%, and 39%, respectively. Cotyledons required the shortest induction time (7 d), 3 d shorter than cotyledon nodes and 8 d shorter than hypocotyls. Cotyledons were also the optimal explants for R18, their rooting capacity differed. Genotype comparisons revealed that 20 days post-infection (dpi), the rooting efficiencies per cotyledon were 398% (WC), 116% (R18), 199% (NDM8), 103% (XLZ61), 57% (Gb-1), and 0 (Gb-2). Upland cotton varieties (WC, R18, NDM8, and XLZ61) exhibited rooting efficiencies above 100%, while sea island cotton varieties (Gb-1, Gb-2) were below 100%. Notably, Gb-2 began to root at 35 dpi. Receptor varieties of upland cotton generally showed slightly higher rooting efficiency than production varieties. There was a certain difference between the positive rate of genetic transformation and the rooting rate. The positive rates of NDM8, XLZ61, Gb-1 and Gb-2 at 20 dpi were 59.8%, 16.0%, 38.5% and 0, respectively. Using positive roots as explants, non-embryogenic and embryogenic callus induction yielded transgenic mRUBY-expressing plants, establishing a complete genetic transformation system. The intensity of plant coloration correlated positively with mRUBY expression levels. Additionally, cotton plants with edited GhGI genes were successfully obtained.【Conclusion】The study optimized the A. rhizogenes-mediated root induction process in cotton and established a robust genetic transformation system. This system was successfully applied to gene editing, generating transgenic cotton plants expressing mRUBY and edited GhGI genes.

Key words: cotton, genetic transformation, Agrobacterium rhizogenes, hairy root, gene editing

Fig. 1

Vectors used for transformation"

Table 1

Media used for genetic transformation"

培养基Medium 培养基成分Medium component
液体1/2 MS Liquid 1/2 MS 2.22 g·L-1 MS粉末+15 g·L-1葡萄糖,pH 5.8 2.22 g·L-1 MS powder+15 g·L-1 glucose, pH 5.8
共培养基A1
Co-culture medium A1
MS+0.2 mg·L-1萘乙酸+40 mg·L-1乙酰丁香酮+30 g·L-1葡萄糖+2.5 g·L-1植物凝胶,pH 5.8
MS+0.2 mg·L-1 NAA+40 mg·L-1 acetosyringone (AS)+30 g·L-1 glucose+2.5 g·L-1 gelling agents, pH 5.8
生根培养基
Root inducing medium (RIM)
MS+250 mg·L-1 噻孢霉素+30 g·L-1葡萄糖+2.5 g·L-1植物凝胶,pH 5.8
MS+250 mg·L-1 cefotaxime nasalt+30 g·L-1 glucose+2.5 g·L-1 gelling agents, pH 5.8
愈伤诱导培养基
Callus inducing medium (CIM)
4.44 g·L-1 MS粉末+0.1 mg·L-1二氯苯氧乙酸+0.1 mg·L-1激动素+250 mg·L-1噻孢霉素+30 g·L-1葡萄糖+2.5 g·L-1植物凝胶,pH 5.8 4.44 g·L-1 MS powder+0.1 mg·L-1 2,4-D+0.1 mg·L-1 KT+250 mg·L-1 cefotaxime nasalt+30 g·L-1 glucose+2.5 g·L-1 gelling agents, pH 5.8
分化培养基
Shoot inducing medium (SIM)
4.44 g·L-1 MS+30 g·L-1葡萄糖+2.5 g·L-1植物凝胶,pH 6.5
4.44 g·L-1 MS+30 g·L-1 glucose+2.5 g·L-1 gelling agents, pH 6.5
长苗培养基
Seedling medium (SM)
2.652 g·L-1 MS+10 mL·L-1 B5有机+1 g·L-1 谷氨酰胺+0.5 g·L-1 L-天冬酰胺+30 g·L-1葡萄糖+2.5 g·L-1植物凝胶,pH 6.5 2.652 g·L-1 MS+10 mL·L-1 B5 organic+1 g·L-1 glutamine (Gln)+0.5 g·L-1 L-asparagine (Asn)+30 g·L-1 glucose+ 2.5 g·L-1 gelling agents, pH 6.5

Table 2

The ratio of hormones in RIM"

名称
Name
激素
Hormone
激素浓度
Hormone concentration (mg·L-1)
名称
Name
激素
Hormone
激素浓度
Hormone concentration (mg·L-1)
N NAA 0.2 NL-4 NAA, Lovastatin 0.2, 3
NI NAA, IBA 0.2, 0.1 NL-5 NAA, Lovastatin 0.2, 5
NL NAA, Lovastatin 0.2, 2 NL-6 NAA, Lovastatin 0.1, 2
NLI NAA, Lovastatin, IBA 0.2, 2, 0.1 NL-7 NAA, Lovastatin 1, 2
NL-1 NAA, Lovastatin 0.2, 0.1 NL-8 NAA, Lovastatin 2, 2
NL-2 NAA, Lovastatin 0.2, 1 NL-9 NAA, Lovastatin 3, 2
NL-3 NAA, Lovastatin 0.2, 2

Fig. 2

Rooting induction of cotton cotyledons on different media"

Fig. 3

Comparison of rooting induced by different explants of WC and R18"

Fig. 4

Induced rooting status in cotyledons of different genotypes of cotton"

Fig. 5

Four colors of hairy roots and their expression levels"

Fig. 6

A. rhizogenes-mediated process of genetic transformation in cotton"

Fig. 7

Adventitious shoots of WC hairy root induction (180 d)"

Fig. 8

Rooting and gene editing status of WC and R18 cotyledons infected with pCas9-GFP"

[1]
李梓秋. 四大棉花生产国的产业现状及特点. 农经, 2021(5): 90-95.
LI Z Q. Industrial status and characteristics of the four major cotton producing countries. Agriculture Economics, 2021(5): 90-95. (in Chinese)
[2]
贾士荣, 郭三堆, 安道昌, 夏桂先. 转基因棉花. 北京: 科学出版社, 2001.
JIA S R, GUO S D, AN D C, XIA G X. Transgenic Cotton. Beijing: Science Press, 2001. (in Chinese)
[3]
许智宏, 张宪省, 苏英华, 胡玉欣, 徐麟, 王佳伟. 植物细胞全能性和再生. 中国科学 (生命科学), 2019, 49(10): 1282-1300.
XU Z H, ZHANG X S, SU Y H, HU Y X, XU L, WANG J W. Plant cell totipotency and regeneration. Scientia Sinica (Vitae), 2019, 49(10): 1282-1300. (in Chinese)
[4]
魏延宏, 马玲玲, 何兰兰, 柴蒙亮, 朱华国, 孙杰, 张薇. 农杆菌介导海岛棉茎尖遗传转化体系的建立. 农业生物技术学报, 2014, 22(10): 1242-1250.
WEI Y H, MA L L, HE L L, CHAI M L, ZHU H G, SUN J, ZHANG W. Establishment of stem tips genetic transformation system mediated by Agrobacterium in Gossypium barbadense L. Journal of Agricultural Biotechnology, 2014, 22(10): 1242-1250. (in Chinese)
[5]
KESIRAJU K, MISHRA P, BAJPAI A, SHARMA M, RAO U, SREEVATHSA R. Agrobacterium tumefaciens-mediated in planta transformation strategy for development of transgenics in cotton (Gossypium hirsutum L.) with GFP as a visual marker. Physiology and Molecular Biology of Plants, 2020, 26(11): 2319-2327.
[6]
陈虹地. 大豆胚尖遗传转化体系的优化及CHS8, MYB12b2基因的遗传转化[D]. 长春: 吉林大学, 2014.
CHEN H D. Optimization of soybean embryo tip genetic transformation system and gene CHS8, MYB12b2 genetic transformation[D]. Changchun: Jilin University, 2014. (in Chinese)
[7]
杨艳丽. 双抗虫基因转化欧美杨107杨的研究[D]. 保定: 河北农业大学, 2012.
YANG Y L. The research on two insect-resistance genes transforming into Populus × euramericana 107[D]. Baoding: Hebei Agricultural University, 2012. (in Chinese)
[8]
郭利军. 农杆菌介导巨桉无性系Eg5遗传转化的研究[D]. 北京: 中国林业科学研究院, 2012.
GUO L J. Study on Agrobacterium-mediated genetic transformation of Eucalyptus grandis clone Eg5[D]. Beijing: Chinese Academy of Forestry, 2012. (in Chinese)
[9]
CAO X S, XIE H T, SONG M L, LU J H, MA P, HUANG B Y, WANG M G, TIAN Y F, CHEN F, PENG J, LANG Z B, LI G F, ZHU J K. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation, 2023, 4(1): 100345.
[10]
CAO X S, XIE H T, SONG M L, ZHAO L H, LIU H L, LI G F, ZHU J K. Simple method for transformation and gene editing in medicinal plants. Journal of Integrative Plant Biology, 2024, 66(1): 17-19.

doi: 10.1111/jipb.13593
[11]
LU J H, LI S S, DENG S, WANG M G, WU Y H, LI M, DONG J S, LU S H, SU C L, LI G F, LANG Z B, ZHU J K. A method of genetic transformation and gene editing of succulents without tissue culture. Plant Biotechnology Journal, 2024, 22(7): 1981-1988.

doi: 10.1111/pbi.14318 pmid: 38425137
[12]
LIU L, QU J H, WANG C Y, LIU M, ZHANG C M, ZHANG X Y, GUO C, WU C G, YANG G D, HUANG J G, YAN K, SHU H R, ZHENG C C, ZHANG S Z. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. Plant Biotechnology Journal, 2024, 22(8): 2093-2103.
[13]
ZHOU L L, WANG Y L, WANG P L, WANG C L, WANG J M, WANG X F, CHENG H M. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene editing analysis in cotton. Frontiers in Plant Science, 2022, 13: 1059404.
[14]
张程程. 发根农杆菌介导的棉花遗传转化的研究[D]. 北京: 中国农业科学院, 2011.
ZHANG C C. Research on Agrobacterium rhizogenes-mediated genetic transformation in cotton[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[15]
IWASE A, MITA K, NONAKA S, IKEUCHI M, KOIZUKA C, OHNUMA M, EZURA H, IMAMURA J, SUGIMOTO K. WIND1- based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 2015, 128(3): 389-397.
[16]
朱华国, 张献龙, 金双侠, 刘冠泽. 两种常用激素组合下棉花体细胞胚胎发生过程的组织学观察. 棉花学报, 2012, 24(2): 159-166.

doi: 10.11963/cs120210
ZHU H G, ZHANG X L, JIN S X, LIU G Z. Histological observation of the processes during somatic embryogenesis in the two most commonly used PGR regimes in cotton. Cotton Science, 2012, 24(2): 159-166. (in Chinese)
[17]
张伟艳, 朱滨杰, 时健, 韩阳瑞, 朱秀秀, 范玉朋. 不同质量浓度的IAA、NAA处理对尤加利种子萌发的影响. 南方农业, 2024, 18(5): 13-17.
ZHANG W Y, ZHU B J, SHI J, HAN Y R, ZHU X X, FAN Y P. Effects of different concentrations of IAA and NAA on eucalyptus seed germination. South China Agriculture, 2024, 18(5): 13-17. (in Chinese)
[18]
丁喜莲. 农杆菌介导的海岛棉转Bt基因遗传转化研究[D]. 乌鲁木齐: 新疆农业大学, 2015.
DING X L. Study on Agrobacterium tumefaciens-mediated genetic transformation of Bt gene into island cotton (Gossypium barbadense L.)[D]. Urumqi: Xinjiang Agricultural University, 2015. (in Chinese)
[19]
娄亚芳. 棉花毛状根转化体系的建立[D]. 保定: 河北农业大学, 2018.
LOU Y F. Establishment of hairy root transformation system in cotton[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese)
[20]
LEE H G, JANG S Y, JIE E Y, CHOI S H, PARK O S, BAE S H, KIM H S, KIM S W, HWANG G S, SEO P J. Adenosine monophosphate enhances callus regeneration competence for de novo plant organogenesis. Molecular Plant, 2023, 16(12): 1867-1870.
[21]
王清连, 王敏, 师海荣. 植物激素对棉花体细胞胚胎发生的诱导及调节作用. 生物技术通讯, 2004, 15(6): 577-579.
WANG Q L, WANG M, SHI H R. Hormones regulation on cotton somatic embryogenesis. Letters in Biotechnology, 2004, 15(6): 577-579. (in Chinese)
[22]
张献龙, 孙济中, 刘金兰. 陆地棉体细胞胚胎发生与植株再生. 遗传学报, 1991, 18(5): 461-467.
ZHANG X L, SUN J Z, LIU J L. Somatic embryogenesis and plant regeneration in upland cotton. Acta Genetica Sinica, 1991, 18(5): 461-467. (in Chinese)
[23]
TROLINDER N L, GOODIN J R. Somatic embryogenesis in cotton (Gossypium). II. Requirements for embryo development and plant regeneration. Plant Cell, Tissue and Organ Culture, 1988, 12(1): 43-53.
[24]
TROLINDER N L, GOODIN J R. Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 1987, 6(3): 231-234.
[25]
TROLINDER N L, GOODIN J R. Somatic embryogenesis in cotton (Gossypium). I. Effects of source of explant and hormone regime. Plant Cell, Tissue and Organ Culture, 1988, 12(1): 31-42.
[26]
SUN Y, ZHANG X, HUANG C, GUO X, NIE Y. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Reports, 2006, 25(4): 289-296.

pmid: 16315034
[27]
MAO J P, NIU C D, LI K, FAN L, LIU Z, LI S H, MA D D, TAHIR M M, XING L B, ZHAO C P, MA J J, AN N, HAN M Y, REN X L, ZHANG D. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. The Plant Cell, 2023, 35(4): 1202-1221.
[28]
李凯利, 魏云晓, 种智力, 孟志刚, 王远, 梁成真, 陈全家, 张锐. 红蓝光促进陆地棉愈伤组织诱导和增殖. 中国农业科学, 2024, 57(4): 638-649. doi: 10.3864/j.issn.0578-1752.2024.04.002.
LI K L, WEI Y X, CHONG Z L, MENG Z G, WANG Y, LIANG C Z, CHEN Q J, ZHANG R. Red and blue light promotes cotton callus induction and proliferation. Scientia Agricultura Sinica, 2024, 57(4): 638-649. doi: 10.3864/j.issn.0578-1752.2024.04.002. (in Chinese)
[29]
魏进莉. 荷包牡丹的组培快繁技术研究. 天津农业科学, 2022, 28(4): 10-14.
WEI J L. Study on tissue rapid propagation of Lamprocapnos spectabilis ‘amore rose’. Tianjin Agricultural Sciences, 2022, 28(4): 10-14. (in Chinese)
[30]
王国熙. 木槿组培快繁技术研究. 安徽农学通报, 2017, 23(11): 54-57.
WANG G X. Research on tissue culture and fast propagation technology of Hibiscus syriacus. Anhui Agricultural Science Bulletin, 2017, 23(11): 54-57. (in Chinese)
[31]
CHENG C, LIU Y M, LIU X, AN J, JIANG L, YU B J. Recretohalophyte Tamarix TrSOS1 confers higher salt tolerance to transgenic plants and yeast than glycophyte soybean GmSOS1. Environmental and Experimental Botany, 2019, 165: 196-207.
[32]
WEI P P, WANG L C, LIU A, YU B J, LAM H M. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Frontiers in Plant Science, 2016, 7: 1082.

doi: 10.3389/fpls.2016.01082 pmid: 27504114
[33]
AGGARWAL P R, NAG P, CHOUDHARY P, CHAKRABORTY N, CHAKRABORTY S. Genotype-independent Agrobacterium rhizogenes- mediated root transformation of chickpea: A rapid and efficient method for reverse genetics studies. Plant Methods, 2018, 14: 55.
[34]
BAZALDÚA C, CARDOSO-TAKETA A, TREJO-TAPIA G, CAMACHO- DIAZ B, ARELLANO J, VENTURA-ZAPATA E, VILLARREAL M L. Improving the production of podophyllotoxin in hairy roots of Hyptis suaveolens induced from regenerated plantlets. PLoS ONE, 2019, 14(9): e0222464.
[35]
赵陆滟, 李荣平, 吴劲松. 渐狭叶烟草组培苗生根条件优化及在基因转化中的应用. 亚热带植物科学, 2021, 50(3): 175-181.
ZHAO L Y, LI R P, WU J S. Optimization of rooting conditions in tissue-cultured seedlings of Nicotiana attenuata and its applications in gene transformation. Subtropical Plant Science, 2021, 50(3): 175-181. (in Chinese)
[36]
LIEBSCH D, PALATNIK J F. MicroRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth regulatory module with potential for breeding and biotechnology. Current Opinion in Plant Biology, 2020, 53: 31-42.

doi: S1369-5266(19)30077-9 pmid: 31726426
[37]
罗晓丽, 姜艳丽, 肖娟丽, 武宗信, 张安红, 王志安, 吴家和. 早熟棉体细胞胚胎发生和植株再生体系的建立. 西北植物学报, 2011, 31(3): 609-615.
LUO X L, JIANG Y L, XIAO J L, WU Z X, ZHANG A H, WANG Z A, WU J H. Establishment of somatic embryogenesis and plant regeneration system of early mature cotton varieties. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(3): 609-615. (in Chinese)
[38]
乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选. 作物学报, 2024, 50(5): 1172-1180.

doi: 10.3724/SP.J.1006.2024.34167
LE Y, WANG T, ZHANG X L, LIN Z X. Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L. Acta Agronomica Sinica, 2024, 50(5): 1172-1180. (in Chinese)
[39]
李静, 张换样, 朱永红, 吴慎杰, 焦改丽. 农杆菌介导棉花遗传转化的影响因素. 南方农业, 2020, 14(22): 8-12, 28.
LI J, ZHANG H Y, ZHU Y H, WU S J, JIAO G L. Influencing factors of Agrobacterium-mediated genetic transformation of cotton. South China Agriculture, 2020, 14(22): 8-12, 28. (in Chinese)
[1] ZHAO YuXuan, MIAO JiYuan, HU Wei, ZHOU ZhiGuo. Effects of Low Temperature at Seedling Stage on Cotton Floral Bud Differentiation and Cotton Plant Yield [J]. Scientia Agricultura Sinica, 2025, 58(7): 1311-1320.
[2] LUO Gang, CHENG YiYi, YANG Wen, XIAO YiMeng, YANG ChengXi. CRISPR-Cas12a Gene Editing Technology and Its Application in Agricultural Production [J]. Scientia Agricultura Sinica, 2025, 58(7): 1434-1450.
[3] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[4] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[5] XU YiHeng. The Dilemma and Way Out of Patent Regulation for Gene-Edited Crops [J]. Scientia Agricultura Sinica, 2025, 58(5): 831-839.
[6] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[7] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[8] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[9] LI KaiLi, WEI YunXiao, CHONG ZhiLi, MENG ZhiGang, WANG Yuan, LIANG ChengZhen, CHEN QuanJia, ZHANG Rui. Red and Blue Light Promotes Cotton Callus Induction and Proliferation [J]. Scientia Agricultura Sinica, 2024, 57(4): 638-649.
[10] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
[11] ZHANG YongLi, ZHANG Ning, XU Jiao, XU DouDou, CHENG Fang, ZHANG ChengLong, WU BiBo, GONG YangCang, HE YunXin, WEI ShangZhi, TU XiaoJu, LIU AiYu, ZHOU ZhongHua. Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(22): 4444-4458.
[12] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[13] WU YuHua, ZHAI ShanShan, PU HaoZhen, GAO HongFei, ZHANG Hua, LI Jun, LI YunJing, XIAO Fang, WU Gang, XU LiQun. Progress on Detection Methods for Gene-Edited Organisms [J]. Scientia Agricultura Sinica, 2024, 57(17): 3318-3334.
[14] CAO Peng, ZHOU JinHuan, WANG XinLiang, LI ChuXin, LI JiaXIN, JIANG Pei, LIU JinXiang, SONG Zhen. Optimization and Application of Rapid Evaluation System for Citrus Huanglongbing Resistance Mediated by Agrobacterium rhizogenes [J]. Scientia Agricultura Sinica, 2024, 57(16): 3182-3191.
[15] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!