Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1463-1478.doi: 10.3864/j.issn.0578-1752.2025.08.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

The Function of OsDREB1J in Regulating Rice Grain Size

WEI Ping1(), PAN JuZhong1, ZHU DePing1, SHAO ShengXue1, CHEN ShanShan1, WEI YaQian1, GAO WeiWei1,2()   

  1. 1 College of Agriculture, Guangxi University, Nanning 530004
    2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004
  • Received:2024-08-28 Accepted:2024-10-17 Online:2025-04-21 Published:2025-04-21
  • Contact: GAO WeiWei

Abstract:

【Objective】 The AP2/ERF (APETALA2/ethylene responsive factor) superfamily is a group of transcription factors that play important regulatory roles in plant growth and development, as well as in response to adverse environmental stressors. The AP2/ERF transcription factors are widely present and have many members in plants. Exploring the function of AP2/ERF family gene on grain size provides important genetic resources for regulating grain shape in rice. 【Method】OsDREB1J gene (LOC_Os08g43200) was cloned by homologous recombination, and its basic characteristics, tissue expression characteristics, and the relative expression patterns under plant hormones were analyzed by bioinformatics and qRT-PCR. The transactivation activity and subcellular localization of OsDREB1J were analyzed by yeast heterologous expression, transient expression of rice protoplasts and tobacco. The overexpression and knockout mutant transgenic rice plants of OsDREB1J were obtained by genetic transformation system, and the grain size phenotypes were analyzed by phenotypic analysis technology. 【Result】Subcellular localization analysis showed that OsDREB1J was localized in the nucleus. Bioinformatics showed that the full-length coding sequence of OsDREB1J was 711 bp, encoding 236 amino acids. OsDREB1J protein had no transmembrane structure, and the molecular weight of 27.47 kDa, the theoretical isoelectric point of 5.54, and had a conserved AP2 domain unique to the AP2/ERF family. The cis-acting elements analysis of OsDREB1J promoter showed that the promoter contained cis-acting elements related to hormone response, light and stresses response. The qRT-PCR analysis showed that OsDREB1J was expressed in different tissues of rice with no tissue specificity, and the relative expression level in panicle was the highest. At the same time, OsDREB1J was induced or reduced by different hormone. Transcriptional activation analysis showed that the full-length of OsDREB1J has no transcriptional activity, but the C-terminal fragment was sufficient for the transactivation ability. Phenotypic analysis showed that the grain length, length-width ratio and thousand grain weight of osdreb1j mutant were significantly higher than those of ZH11, OsDREB1J overexpression transgenic rice plants displayed opposite phenotypes, while changing the expression of OsDREB1J did not affect rice grain width. These results show that OsDREB1J may affect grain size by regulating cell length rather than cell proliferation and cell expansion. 【Conclusion】In conclusion, OsDREB1J may be involved in regulating rice grain size through hormone signaling pathway.

Key words: rice, OsDREB1J, transcription factor, grain size, subcellular localization, expression pattern

Table 1

Primers and sequences in this study"

引物名称Primer name 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
OsDREB1J-GFP ACTAGTGGATCCGGTACCATGGAGAAGAACACCACCGC CTTGCTCACCATGGTACCGCTCCACAGCTCCATTTCAG
OsDREB1J-ox TCTCTCTCAAGCTTGGATCCATGGAGAAGAACACCACCGC ATACCGTCACTAGTGGATCCGCTCCACAGCTCCATTTCAG
BD-DREB1J GCCATGGAGGCCGAATTCATGGAGAAGAACACCACCGC CCGCTGCAGGTCGACGGATCCCGCTCCACAGCTCCATTTCAG
BD-DREB1J-N GCCATGGAGGCCGAATTCATGGAGAAGAACACCACCGC CCGCTGCAGGTCGACGGATCCCGAGCAGCCAGGCGGAGTC
BD-DREB1J-C GCCATGGAGGCCGAATTCATGCACGTCCCCCGCGC CCGCTGCAGGTCGACGGATCCCGCTCCACAGCTCCATTTCAG
OsDREB1J-q CATGACCAGCTGCCCGACGT GTGACAGAACGGGCGACGAC
DREB1J-62-sk CGCCGTCTAGAACTAGTGGATCCATGGAGAAGAACACCACCGC TCGATAAGCTTGATATCGAATTCCTAGCTCCACAGCTCCATTTC
DREB1J-N-62-sk CGCCGTCTAGAACTAGTGGATCCATGGAGAAGAACACCACCGC TCGATAAGCTTGATATCGAATTCCTAGAGCAGCCAGGCGGAGTC
DREB1J-C-62-sk CGCCGTCTAGAACTAGTGGATCCATGCACGTCCCCCGCGC TCGATAAGCTTGATATCGAATTCCTAGCTCCACAGCTCCATTTC
e-EF-1α GCACGCTCTTCTTGCTTTC AGGGAATCTTGTCAGGGTTG

Fig. 1

Bioinformatics analysis of OsDREB1J A: Prediction of protein hydrophilic/hydrophobic; B: Prediction of transmembrane domains; C: Schematic diagram of protein structure; D: Prediction of protein phosphorylation site"

Table 2

The promoter elements of OsDREB1J"

名称
Name
序列
Sequence
功能
Function
数量
Number
ACE GACACGTATG 参与光响应的顺式调节元件 Cis-acting element involved in light responsive ness 9
Sp1 GGGCGG 光响应元件 Light responsive element 6
TATA-box TACAAAA 转录起始位点-30附件的核心启动子元件 Core promoter element around-30 of transcription start 7
TGACG-motif TACAAAA 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in the MeJA-responsiveness 5
CGTCA-motif CGTCA 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in the MeJA-responsiveness 5
TCA-element CCATCTTTTT 水杨酸响应元件 Cis-acting element involved in salicylic acid responsive ness 9
G-Box TGACG 参与光反应响应的顺式作用元件 Cis-acting regulatory element involved in light responsive ness 5
ABRE ACGTG 脱落酸响应元件 Cis-acting element involved in the abscisic acid responsive ness 6
ABRE CGCACGTGTC 脱落酸响应元件 Cis-acting element involved in the abscisic acid responsive ness 9
ABRE CACGTG 脱落酸响应元件 Cis-acting element involved in the abscisic acid responsive ness 6
CAAT-box CAAAT 启动子和增强子区域的通用的顺式作用元件
Common cis-acting element in promoter and enhancer regions
5
MBS CAACTG 拟南芥中参与干旱诱导的MYB结合位点
Arabidopsis thaliana MYB binding site involved in drought-inducibility
6
GARE-motif TCTGTTG 赤霉素响应元件 Gibberellin-responsive element 7
TCT-motif TCTTAC 光响应元件 Partofa light responsive element 6

Fig. 2

Analysis of conserved motifs, domains, and gene structure of OsDREB family genes A: The conserved motif analysis of OsDREB proteins. Different colored boxes indicate differently conserved motif, black lines indicate protein length; B: The gene structure analysis of OsDREB genes. Different colored boxes represent different domains, the green boxes represent 5′ and3′ untranslated regions (UTRs), the yellow boxes indicate the coding sequence (CDS), the red boxes indicate the AP2 domain, the black line indicates introns"

Fig. 3

Nucleic acid structure and cloning of OsDREB1J A: Nucleic acid structure of OsDREB1J, Filled blue bars indicate exons of the OsDREB1J gene; B: Amplification of OsDREB1J. M: DL2000 Maker, 1: OsDERB1J"

Fig. 4

Subcellular localization of OsDREB1J protein A: Subcellular localization of OsDREB1J protein in rice protoplasts, bar=3 μm; B: Subcellular localization of OsDREB1J protein in Nicotona benthamiana, bar=20 μm"

Fig. 5

Transcriptional activation analyses of OsDREB1J A, B: Transcriptional activation of OsDREB1J in yeast; C, D: Transcriptional activation of OsDREB1J in Nicotona benthamiana. A and C indicate the schematic diagrams of various constructs. *P<0.05, **P<0.01. The same as below"

Fig. 6

Expression patterns of OsDREB1J gene in different tissues A, B: Expression patterns of OsDREB1J in various organs of rice. Data are from the rice eFP Browser. The shade of color represents the level of expression; C: Expression patterns of OsDREB1J in various organs of ZH11 by qRT-PCR"

Fig. 7

Effects of exogenous hormones on the expression of OsDREB1J A:10 μmol·L-1 JA;B:50 mmol·L-1 ABA;C:10 μmol·L-1 GA"

Fig. 8

The rice grain size phenotype of OsDREB1J transgenic rice plants A: Expression levels of OsDREB1J in OsDREB1J-ox lines by qRT-PCR; B: Generation of target site mutations in representative knockout lines of OsDREB1J rice plants using the CRISPR/Cas9 system. Filled blue bars indicate exons of the OsDREB1J gene. Cyan letters indicate the target sequence, the deletion line represents the missing base and the red letter represents the mutant base; C, D: Comparison of grain shape between wild-type (ZH11) and transgenic rice plants. E-H: The grain length, grain width, grain length to width ratio and thousand grain weight of ZH11 and transgenic rice plants. Bar=1 cm"

[1]
WANG Y Y, LV Y, YU H P, HU P, WEN Y, WANG J G, TAN Y Q, WU H, ZHU L X, WU K X, CHAI B Z, LIU J L, ZENG D L, ZHANG G H, ZHU L, GAO Z Y, DONG G J, REN D Y, SHEN L, ZHANG Q, LI Q, GUO L B, XIONG G S, QIAN Q, HU J. GR5 acts in the G protein pathway to regulate grain size in rice. Plant Communications, 2024, 5(1): 100673.
[2]
ZOU T, ZHANG K X, ZHANG J, LIU S J, LIANG J, LIU J X, ZHU J, LIANG Y Y, WANG S Q, DENG Q M, LIU H N, JIN J H, LI P, LI S C. DWARF AND LOW-TILLERING 2 functions in brassinosteroid signaling and controls plant architecture and grain size in rice. The Plant Journal, 2023, 116(6): 1766-1783.

doi: 10.1111/tpj.16464 pmid: 37699038
[3]
JI X, DU Y X, LI F, SUN H Z, ZHANG J, LI J Z, PENG T, XIN Z Y, ZHAO Q Z. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnology Journal, 2019, 17(8): 1527-1537.
[4]
LU L, DIAO Z J, YANG D W, WANG X, ZHENG X X, XIANG X Q, XIAO Y P, CHEN Z W, WANG W, WU Y K, TANG D Z, LI S P. The 14-3-3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant, Cell & Environment, 2022, 45(4): 1065-1081.
[5]
悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
YUE M F, ZHANG C, WU Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family. Biotechnology Bulletin, 2022, 38(12): 11-26. (in Chinese)
[6]
EL OUAKFAOUI S, SCHNELL J, ABDEEN A, COLVILLE A, LABBÉ H, HAN S Y, BAUM B, LABERGE S, MIKI B. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology, 2010, 74(4/5): 313-326.
[7]
NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432.
[8]
YANG L J, XU L, GUO J Z, LI A P, QI H Y, WANG J X, SONG S Y. SNAC1-OsERF103-OsSDG705 module mediates drought response in rice. New Phytologist, 2024, 241(6): 2480-2494.
[9]
JUNG H, CHUNG P J, PARK S H, REDILLAS M C F R, KIM Y S, SUH J W, KIM J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnology Journal, 2017, 15(10): 1295-1308.

doi: 10.1111/pbi.12716 pmid: 28244201
[10]
LEE D K, JUNG H, JANG G, JEONG J S, KIM Y S, HA S H, CHOI Y D, KIM J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiology, 2016, 172(1): 575-588.
[11]
HUANG S Z, MA Z M, HU L J, HUANG K, ZHANG M X, ZHANG S H, JIANG W Z, WU T, DU X L. Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses. Plant Physiology and Biochemistry, 2021, 167: 22-30.

doi: 10.1016/j.plaphy.2021.07.027 pmid: 34329842
[12]
CHALLAM C, GHOSH T, RAI M, TYAGI W. Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. Journal of Genetics, 2015, 94(2): 231-238.

pmid: 26174670
[13]
MAO D H, CHEN C Y. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold- responsive pathway. PLoS ONE, 2012, 7(10): e47275.
[14]
WEI S B, LI X, LU Z F, ZHANG H, YE X Y, ZHOU Y J, LI J, YAN Y Y, PEI H C, DUAN F Y, WANG D Y, CHEN S, WANG P, ZHANG C, SHANG L G, ZHOU Y, YAN P, ZHAO M, HUANG J R, BOCK R, QIAN Q, ZHOU W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377(6604): eabi8455.
[15]
HERATH V. Small family, big impact: In silico analysis of DREB2 transcription factor family in rice. Computational Biology and Chemistry, 2016, 65: 128-139.

doi: S1476-9271(16)30262-6 pmid: 27816829
[16]
WANG H H, LU S, GUAN X Y, JIANG Y, WANG B, HUA J, ZOU B H. Dehydration-responsive element binding protein 1C, 1E, and 1G promote stress tolerance to chilling, heat, drought, and salt in rice. Frontiers in Plant Science, 2022, 13: 851731.
[17]
ZHANG M X, ZHAO R R, WANG H T, REN S L, SHI L Y, HUANG S Z, WEI Z Q, GUO B Y, JIN J Y, ZHONG Y, CHEN M J, JIANG W Z, WU T, DU X L. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice. Plant Cell Reports, 2023, 42(2): 223-234.
[18]
MALLIKARJUNA G, MALLIKARJUNA K, REDDY M K, KAUL T. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnology Letters, 2011, 33(8): 1689-1697.
[19]
DU F P, WANG Y X, WANG J, LI Y B, ZHANG Y, ZHAO X Q, XU J L, LI Z K, ZHAO T Y, WANG W S, FU B Y. The basic helix- loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. Journal of Integrative Plant Biology, 2023, 65(8): 1859-1873.
[20]
MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y R, XIE Y Y, SHEN R X, CHEN S F, WANG Z, CHEN Y L, GUO J X, CHEN L T, ZHAO X C, DONG Z C, LIU Y G. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
[21]
LI N, LI Y H. Signaling pathways of seed size control in plants. Current Opinion in Plant Biology, 2016, 33: 23-32.

doi: S1369-5266(16)30083-8 pmid: 27294659
[22]
SUN P Y, ZHANG W H, WANG Y H, HE Q, SHU F, LIU H, WANG J, WANG J M, YUAN L P, DENG H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology, 2016, 58(10): 836-847.
[23]
HAO J Q, WANG D K, WU Y B, HUANG K, DUAN P G, LI N, XU R, ZENG D L, DONG G J, ZHANG B L, ZHANG L M, INZÉ D, QIAN Q, LI Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14(8): 1266-1280.

doi: 10.1016/j.molp.2021.04.011 pmid: 33930509
[24]
姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制. 生物技术通报, 2023, 39(8): 80-90.

doi: 10.13560/j.cnki.biotech.bull.1985.2023-0273
YAO S S, WANG J J, WANG J J, LIANG W H. Molecular mechanisms of rice grain size regulation related to plant hormone signaling pathways. Biotechnology Bulletin, 2023, 39(8): 80-90. (in Chinese)
[25]
CHEN Y, SUN M Z, JIA B W, LENG Y, SUN X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response. Acta Agronomica Sinica, 2022, 48(4): 781-790.

doi: 10.3724/SP.J.1006.2022.12026
[26]
TANG N, ZHANG H, LI X H, XIAO J H, XIONG L Z. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology, 2012, 158(4): 1755-1768.

doi: 10.1104/pp.111.190389 pmid: 22301130
[27]
REN D Y, LI Y F, ZHAO F M, SANG X C, SHI J Q, WANG N, GUO S, LING Y H, ZHANG C W, YANG Z L, HE G H. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. Plant Physiology, 2013, 162(2): 872-884.

doi: 10.1104/pp.113.216044 pmid: 23629832
[28]
YU L, YAO M, MAO L L, MA T F, NIE Y S, MA H L, SHAO K, AN H Q, ZHAO J. Rice DSP controls stigma, panicle and tiller primordium initiation. Plant Biotechnology Journal, 2023, 21(11): 2358-2373.
[29]
LEE D Y, AN G. Two AP2 family genes, supernumerary bract (SNB) and OsINDETERMINATE spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. The Plant Journal, 2012, 69(3): 445-461.
[30]
LI F C, WU L, LI X, CHAI Y N, RUAN N, WANG Y, XU N, YU Z W, WANG X C, CHEN H, LU J H, XU H, XU Z J, CHEN W F, XU Q. Dissecting the molecular basis of the ultra-large grain formation in rice. New Phytologist, 2024, 243(6): 2251-2264.
[31]
DUBOUZET J G, SAKUMA Y, ITO Y, KASUGA M, DUBOUZET E G, MIURA S, SEKI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33(4): 751-763.
[32]
WANG Y X, XIONG G S, HU J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E B, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015, 47(8): 944-948.

doi: 10.1038/ng.3346 pmid: 26147619
[33]
SI L Z, CHEN J Y, HUANG X H, GONG H, LUO J H, HOU Q Q, ZHOU T Y, LU T T, ZHU J J, SHANGGUAN Y Y, CHEN E W, GONG C X, ZHAO Q, JING Y F, ZHAO Y, LI Y, CUI L L, FAN D L, LU Y Q, WENG Q J, WANG Y C, ZHAN Q L, LIU K Y, WEI X H, AN K, AN G, HAN B. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48(4): 447-456.

doi: 10.1038/ng.3518 pmid: 26950093
[34]
MAO H L, SUN S Y, YAO J L, WANG C R, YU S B, XU C G, LI X H, ZHANG Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584.
[35]
DUAN P G, XU J S, ZENG D L, ZHANG B L, GENG M F, ZHANG G Z, HUANG K, HUANG L J, XU R, GE S, QIAN Q, LI Y H. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant, 2017, 10(5): 685-694.

doi: S1674-2052(17)30098-9 pmid: 28366824
[36]
WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954.

doi: 10.1038/ng.2327 pmid: 22729225
[37]
HU W L, WANG R, HAO X H, LI S Z, ZHAO X J, XIE Z J, WU S, HUANG L Q, TAN Y, TIAN L F, LI D P. OsLCD3 interacts with OsSAMS1 to regulate grain size via ethylene/polyamine homeostasis control. The Plant Journal, 2024, 119(2): 705-719.
[38]
ZHOU C L, LIN Q B, REN Y L, LAN J, MIAO R, FENG M, WANG X, LIU X, ZHANG S Z, PAN T, WANG J C, LUO S, QIAN J S, LUO W F, MOU C L, NGUYEN T, CHENG Z J, ZHANG X, LEI C L, ZHU S S, GUO X P, WANG J, ZHAO Z C, LIU S J, JIANG L, WAN J M. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. The Plant Cell, 2023, 35(12): 4325-4346.
[39]
GAO P, CHEN F F, LIU H T, FAN S J, ZENG J R, DIAO X, LIU Y, SONG W C, WANG S F, LI J, ZHU X B, TU B, CHEN W L, LI T, WANG Y P, MA B T, LI S G, YUAN H, QIN P. qGW11a/ OsCAT8, encoding an amino acid permease, negatively regulates grain size and weight in rice. The Crop Journal, 2024, 12(4): 1150-1158.
[40]
CUI Z B, WANG X W, DAI Y D, LI Y Y, BAN Y J, TIAN W J, ZHANG X B, FENG X Y, ZHANG X F, JIA L Q, HE G H, SANG X C. Transcription factor OsNF-YC1 regulates grain size by coordinating the transcriptional activation of OsMADS1 in Oryza sativa L.. The Plant Journal, 2024, 119(3): 1465-1480.
[1] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[2] WANG MengYuan, WEI QianRui, LI HaiYan, YANG QiaoMin, YU Jun, HUANG Wei, LU MingHui. Functional Analysis of MADS-box Transcription Factor Gene CaAGL61 in Heat Tolerance of Pepper [J]. Scientia Agricultura Sinica, 2025, 58(8): 1604-1616.
[3] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[4] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[5] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[6] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[7] LIU LuPing, HU XueJie, QI Jin, CHEN Qiang, LIU Zhi, ZHAO TianTian, SHI XiaoLei, LIU BingQiang, MENG QingMin, ZHANG MengChen, HAN TianFu, YANG ChunYan. Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2025, 58(5): 840-850.
[8] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[9] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[10] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[11] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[12] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[13] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[14] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[15] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!