Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4085-4099.doi: 10.3864/j.issn.0578-1752.2025.20.005

• BREEDING OF SALT-ALKALI TOLERANT VARIETIES • Previous Articles     Next Articles

Identification of Salt Tolerance in Maize Natural Populations at the Seedling Stage and Analysis of Salt Tolerance-Associated Genes

WU ShuYu1(), HENG YanFang1,2(), YU TaiFei1(), WANG ShiJia3, YU SiJia3, LI Yuan2, HU Zheng1, ZHANG Hui1, SUN XianJun1,3(), LI Liang1,2(), JIANG QiYan1,4()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/The National Engineering Center for Crop Molecular Breeding, Beijing 100081
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing 100081
    4 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-07-16 Accepted:2025-09-23 Online:2025-10-16 Published:2025-10-14
  • Contact: SUN XianJun, LI Liang, JIANG QiYan

Abstract:

【Objective】Soil salinization significantly impairs the growth and development of maize, resulting in reduced yields. Investigating the salt tolerance of various maize inbred lines and identifying favorable allelic variants associated with salt tolerance can provide valuable SNP markers and candidate gene resources for salt-tolerant maize varieties.【Method】This study utilized a natural population comprising 238 inbred maize lines as experimental materials. Twenty-day-old maize seedlings at the three-leaf stage were subjected to treatment with a 300 mmol·L-1 NaCl solution, and changes in biomass, moisture contents as well as salt damage phenotypes were evaluated after 40 days of salt stress. A genome-wide association study (GWAS) was subsequently performed to identify favorable allelic variants associated with salt tolerance in maize.【Result】Through salt tolerance assessment of a maize natural population at the seedling stage, the materials were categorized into five distinct salt tolerance grades based on the salt damage rate: 22 highly tolerant materials (Grade 1), 93 tolerant materials (Grade 2), 62 moderately tolerant materials (Grade 3), 41 salt-sensitive materials (Grade 4), and 20 highly sensitive materials (Grade 5). The number of materials with different salt tolerance levels shows a normal distribution characteristic, with high-tolerance and highly sensitive materials comprising 17.6% of the total, while intermediate-grade materials accounted for 82.4%. Statistical analysis revealed that the salt damage rate was significantly and negatively correlated with the fresh weight, dry weight, and moisture content of plants under salt stress. The investigated traits exhibited considerable variability, indicating substantial differences among the genotypes. Genome-wide association analysis identified a total of 40 SNP loci associated with maize salt tolerance. Further investigation revealed one significantly associated SNP locus on chromosome 1 and another on chromosome 10. Analysis of the candidate genes within the 100 Kb confidence interval upstream and downstream of these two loci identified a total of 18 functional genes, including 9 genes with functional annotations and 9 genes with unknown functions.【Conclusion】22 first-class salt-tolerant maize inbred line materials were selected from a natural population consisting of 238 lines. 40 SNP loci associated with salt tolerance in maize seedlings were identified, among which two key SNPs showed significant association with the trait. Two salt tolerance-related candidate genes, ZmSTYK46 and Zm00001eb004810, were identified. ZmSTYK46 encodes a serine/threonine protein kinase, while the function of Zm00001eb004810 remains unknown.

Key words: Zea mays L., inbred lines, salt tolerance identification, genome-wide association analysis, salt tolerance functional genes

Table 1

Criteria for determining salt damage rate based on plant phenotype under salt stress"

盐害率 SDR (%) 植株表型 Plant phenotype
<10 生长正常或基本正常,无受害症状或叶尖干枯
Growth is within the normal range or essentially normal, with no observed symptoms of damage or dry leaf tips
10-20 第一片叶有半片及以下干枯,其余部分正常生长
The first leaf exhibits partial withering, with half or less of its surface affected, while the remainder continues to develop normally
20-30 第一片叶半片以上干枯或全部干枯,其余部分正常生长
The first leaf is more than half dried or fully desiccated, whereas the remainder of the plant continues to develop normally
30-40 第一片叶全部干枯,第二片叶半片及以下干枯,其余部分正常生长
The first leaf is entirely withered, the second leaf exhibits withering that affects half or less of its surface, and the remaining leaves are growing normally
40-50 第一片叶全部干枯,第二片叶半片以上干枯或全部干枯,其余部分正常生长
The first leaf is entirely withered, and more than half of the second leaf is either withered or fully withered as well, while the remainder of the plant exhibits normal growth
50-60 前两片叶全部干枯,叶心部分发黄未超过1/2,未干枯
The first two leaves are entirely withered, and the yellowing of the leaf center does not extend beyond one-half and remains non-withered
60-70 前两片叶全部干枯,叶心部分发黄超过1/2,未干枯
The first two leaves are entirely withered, and over half of the central portion of the leaf has turned yellow and remains non-withered
70-80 叶片基本全部干枯,茎部正常生长 The leaves are almost entirely withered, while the stems continue to grow normally
80-90 茎部受害未完全干枯 The stem is partially damaged, although it has not completely dried up
90-100 基本完全干枯 The plant has completely dried up

Table 2

Evaluation criteria for salt tolerance in maize seedlings"

盐害率
SDR (%)
耐盐等级
Salt tolerance grade
耐盐性
Salt tolerance

0≤SDR≤20
1级
Grade 1
高耐
High salt tolerance

20<SDR≤40
2级
Grade 2
耐盐
Salt tolerance

40<SDR≤60
3级
Grade 3
中耐
Moderately salt tolerance

60<SDR≤80
4级
Grade 4
敏感
Salt sensitivity

80<SDR≤100
5级
Grade 5
高敏
High salt sensitivity

Fig. 1

Salt tolerance identification of maize inbred lines at the seedling stage A: Identification of salt tolerance in maize seedlings under controlled climatic conditions; B: Statistics on the number of materials for grade 1 to grade 5; C: Phenotypic characteristics of salt-tolerant materials ranked from grade 1 to grade 5; D: Phenotypes of certain grade 5 highly salt-sensitive materials; E Phenotypic characteristics of certain grade 1 highly salt-tolerant materials. N: Normal, S: Salt stress"

Table 3

Basic information of materials classified as grade 1 highly salt-tolerant and grade 5 highly salt-sensitive"

自交系
Inbred lines
鲜重
Fresh weight (g)
干重
Dry weight
(g)
水分含量
Moisture Content (%)
盐害率
Salt damage rate (%)
耐盐等级
Salt tolerance grade
耐盐性
Salt tolerance
类群
Group
耐盐等位变异*
Salt-tolerant allelic variation
Chang7_2 6.37±1.03 0.63±0.13 90.12±1.40 1.67±0.67 1 HST TSPT 11100
Oh43 3.25±0.57 0.30±0.02 90.87±1.81 6.67±0.27 1 HST Lvda 11100
A3046 2.91±0.54 0.31±0.09 89.47±1.42 6.67±0.67 1 HST Iodent -
21N35755 7.92±0.77 0.91±0.12 88.50±0.62 11.67±1.33 1 HST BSSS -
M-LD656 6.11±0.96 0.61±0.11 90.00±1.39 12.00±1.69 1 HST Lancaster 11110
LH191 6.67±0.90 0.82±0.09 87.65±1.42 13.33±1.26 1 HST - -
PHP76 5.10±0.79 0.50±0.09 90.12±1.29 13.33±1.33 1 HST Iodent -
PHG35 5.72±0.76 0.58±0.07 89.87±0.34 13.33±0.33 1 HST BSSS 11100
M-DH969-ZW 3.37±0.91 0.36±0.06 89.44±1.52 14.00±1.66 1 HST BSSS 01100
2004005029 3.67±0.20 0.45±0.04 87.77±0.52 15.00±1.00 1 HST Flint 10100
LH163 7.93±1.08 0.84±0.18 89.44±0.55 16.67±1.28 1 HST Iodent -
WIL_18 7.86±0.69 0.82±0.06 89.60±0.22 16.67±0.67 1 HST TSPT 01100
PHBA6 4.21±0.69 0.46±0.04 89.06±1.91 17.67±1.88 1 HST Lancaster 11100
W22 6.38±0.44 0.67±0.04 89.44±0.80 18.33±2.93 1 HST Lancaster 11100
Lx9801 7.43±1.01 0.83±0.20 88.88±0.88 18.33±1.41 1 HST TSPT 11100
丹3130 Dan3130 4.40±0.33 0.46±0.05 89.54±0.49 18.33±1.26 1 HST Lancaster 11100
WPH-PB21-303 6.17±1.04 0.70±0.11 88.65±1.27 18.33±1.33 1 HST Flint -
2004011031 8.20±0.26 0.99±0.07 87.91±1.12 19.00±1.54 1 HST Iodent 10100
200B 7.81±1.10 0.89±0.12 88.59±1.08 19.33±1.35 1 HST Flint 11100
21N35798 5.16±0.83 0.55±0.08 89.34±0.54 20.00±1.56 1 HST Reid 11111
PHN82 3.32±0.29 0.46±0.01 86.19±1.11 20.00±1.00 1 HST Iodent 11100
PHR58 4.93±0.41 0.49±0.05 90.12±0.52 20.00±1.66 1 HST P78599 11100
6F629 2.18±0.32 0.38±0.01 82.44±2.06 81.67±1.33 5 HSS BSSS -
Dahuang46 1.10±0.48 0.19±0.07 82.39±5.35 81.67±1.01 5 HSS TSPT 11100
LIBC_4 1.47±0.35 0.31±0.05 78.97±2.9 81.67±1.67 5 HSS Iodent -
F-JY201 2.13±0.29 0.43±0.08 79.56±1.49 83.33±1.33 5 HSS Lancaster 11100
21N35812 1.94±0.04 0.42±0.04 78.45±1.64 83.33±1.26 5 HSS BSSS 10100
PHN66 2.01±0.21 0.47±0.02 76.79±2.04 83.33±1.41 5 HSS BSSS -
PHRKB 1.46±0.29 0.39±0.06 73.68±1.78 83.33±1.26 5 HSS BSSS 10000
PHR55 1.46±0.39 0.31±0.09 78.59±0.77 85.00±1.64 5 HSS Iodent -
LH192 1.61±0.26 0.29±0.06 82.13±1.30 85.00±1.77 5 HSS BSSS 10100
2004010028 2.50±0.46 0.45±0.04 82.05±0.54 85.00±1.00 5 HSS BSSS 00100
21N35716 1.85±0.45 0.49±0.06 73.33±0.81 88.33±1.41 5 HSS Flint 10100
丹6263 Dan6263 1.26±0.27 0.31±0.04 75.66±0.34 90.00±1.89 5 HSS Reid 11100
Baihunhuang 1.11±0.60 0.25±0.08 77.83±0.25 90.00±1.77 5 HSS 其他类型
Other
11000
WIL_3 1.72±0.27 0.43±0.05 74.98±0.13 91.67±1.41 5 HSS Iodent 11000
LH195 0.68±0.26 0.15±0.10 77.53±0.67 91.67±2.01 5 HSS 其他类型
Other
10100
21N35655 1.62±0.11 0.56±0.12 65.75±1.02 93.33±0.67 5 HSS Reid 11100
Shuang741 2.55±0.16 0.33±0.09 87.26±1.99 93.33±0.67 5 HSS TSPT 11110
21N35915 0.98±0.35 0.26±0.03 73.08±1.43 93.33±1.41 5 HSS P78599 01100
21N35658 0.66±0.17 0.21±0.02 68.35±0.07 96.67±0.67 5 HSS Reid -
M-LY99 0.46±0.09 0.21±0.02 53.74±0.77 100.00±0.00 5 HSS Iodent -

Table 4

Statistical analysis of different phenotypic data under salt stress"

指标
Index
平均值
Average value
标准差
Standard deviation
变异系数
Coefficient of variation (%)
盐胁迫条件下鲜重 Fresh weight under salt stress (g) 3.53 1.62 45.89
盐胁迫条件下干重 Dry weight under salt stress (g) 0.46 0.16 34.78
盐胁迫条件下水分含量 Moisture content under salt stress (%) 85.61 4.63 5.41
盐害率 Salt damage rate (%) 46.14 21.69 47.01

Fig. 2

Correlation analysis of salt tolerance investigation indicators at the seedling stage of maize inbred lines"

Fig. 3

Cluster analysis of salt tolerance among various maize inbred lines"

Fig. 4

Statistical analysis of phenotypic data in maize inbred lines at the seedling stage under salt stress conditions A and B: Analysis of the distribution and dispersion of moisture content; C and D: Analysis of the distribution and dispersion of salt damage rate; E-G: Distribution frequency of traits related to moisture content; H-J: Distribution frequency of traits related to salt damage rate"

Fig. 5

Genome-wide association study of seedling stage salt tolerance in maize inbred lines A: Manhattan plot of genome-wide association analysis for moisture content data; B: QQ plot of genome-wide association analysis for moisture content data; C: Manhattan plot of genome-wide association analysis for salt damage rate data; D: QQ plot of genome-wide association analysis for salt damage rate data"

Fig. 6

Manhattan plot analysis of the candidate gene A: Candidate gene analysis of chromosomes 1 and 10 based on the genome-wide association study of the moisture content phenotype; B: Candidate gene analysis of chromosomes 1 and 10 based on the genome-wide association study of the salt damage rate phenotype"

Table 5

Candidate gene analysis of SNP locus confidence intervals"

染色体
Chr.
候选基因
Candidate genes
基因注释
Gene annotation
基因功能
Gene function
基因功能结构域
Gene functional domain
Chr.1 Zm00001eb004800 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.1 Zm00001eb004810 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.1 Zm00001eb004820 组蛋白H2A变异体1
Histone H2A variant 1 (H2HA1)
DNA结合蛋白异二聚体化活性DNA binding protein heterodimerization activity C端组蛋白H2A
C-terminus histone H2A
Chr.1 Zm00001eb004830 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.1 Zm00001eb004840 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.1 Zm00001eb004850 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.1 Zm00001eb004860 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.10 Zm00001eb434270 3-异丙基苹果酸脱氢酶2
3-isopropylmalate dehydrogenase
2 (IPMDH2)
异柠檬酸/异丙基苹果酸脱氢酶,保守位点
Isocitrate/isopropylmalate dehydrogenase, conserved site
异柠檬酸/异丙基苹果酸脱氢酶
Isocitrate/isopropylmalate dehydrogenase
Chr.10 Zm00001eb434280 丝氨酸/苏氨酸蛋白激酶ATG1t(ATG1t)Serine/threonine-protein kinase ATG1t (ATG1t) 丝氨酸/苏氨酸蛋白激酶ATG1t,膜的整合组成部分,ATP结合(结构/区域)
Serine/threonine-protein kinase ATG1t integral component of membrane ATP binding
蛋白激酶结构域
Protein kinase domain
Chr.10 Zm00001eb434290 丝氨酸/苏氨酸蛋白激酶STY46(STYK46)Serine/threonine-protein kinase STY46 (STYK46) 非特异性丝氨酸/苏氨酸蛋白激酶,ATP结合(结构/区域)
Non-specific serine/threonine protein kinase ATP binding
蛋白激酶结构域
Protein kinase domain
Chr.10 Zm00001eb434300 SKP1相互作用蛋白15(SKIP15)
SKP1-interacting partner 15 (SKIP15)
SKP1相互作用蛋白15,蛋白质结合(结构/区域)
SKP1-interacting partner 15 binding
_
Chr.10 Zm00001eb434310 液泡铁转运蛋白5(VIT5)
Vacuolar iron transporter 5 (VIT5)
液泡铁转运蛋白,铁/锰离子跨膜转运活性
Vacuolar iron transporter iron/manganese ion transmembrane transporter activity
液泡铁转运蛋白家族
VIT family
Chr.10 Zm00001eb434320 可溶性无机焦磷酸酶(PPases)
Soluble inorganic pyrophosphatase (PPases)
可溶性无机焦磷酸酶,镁离子结合(结构/区域),无机二磷酸酶活性
Soluble inorganic pyrophosphatase magnesium ion binding inorganic diphosphatase activity
无机焦磷酸酶
Inorganic pyrophosphatase
Chr.10 Zm00001eb434330 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.10 Zm00001eb434350 过氧化物酶12前体(POD12)Peroxidase 12 precursor (POD12) 过氧化物酶血红素结合(结构/区域),金属离子结合(结构/区域)
Peroxidase heme binding metal ion binding
过氧化物酶
Peroxidase
Chr.10 Zm00001eb434360 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.10 Zm00001eb434370 未知蛋白 Uncharacterized protein 未知功能 Uncharacterized function _
Chr.10 Zm00001eb434380 生长素响应因子13(ARF13)
Auxin response factor 13 (ARF13)
DNA 结合(型)生长素响应因子
DNA binding Auxin response factor
植物特异性B3-DNA 结合结构域
Plant-specific B3-DNA binding domain

Fig. 7

Differential expression analysis of candidate genes under salt stress conditions"

[1]
CUI D Z, WU D D, SOMARATHNA Y, XU C Y, LI S, LI P, ZHANG H, CHEN H B, ZHAO L. QTL mapping for salt tolerance based on SNP markers at the seedling stage in maize (Zea mays L.). Euphytica, 2015, 203(2): 273-283.
[2]
MA L L, ZHANG M Y, CHEN J, QING C Y, HE S J, ZOU C Y, YUAN G S, YANG C, PENG H, PAN G T, et al. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theoretical and Applied Genetics, 2021, 134(10): 3305-3318.
[3]
刘倩倩, 李冉, 周婷芳, 张泽, 上官小川, 潘越, 张德贵, 雍洪军, 李明顺, 韩洁楠. 211份玉米自交系萌发期耐盐性鉴定. 作物杂志, 2024(4): 62-70.
LIU Q Q, LI R, ZHOU T F, ZHANG Z, SHANGGUAN X C, PAN Y, ZHANG D G, YONG H J, LI M S, HAN J N. Identification of salt tolerance of 211 maize inbred lines at germination stage. Crops, 2024(4): 62-70. (in Chinese)
[4]
CAO Y B, LIANG X Y, YIN P, ZHANG M, JIANG C F. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist, 2019, 222(1): 301-317.
[5]
CAO Y B, ZHOU X Y, SONG H F, ZHANG M, JIANG C F. Advances in deciphering salt tolerance mechanism in maize. The Crop Journal, 2023, 11(4): 1001-1010.
[6]
王明泉, 李春霞, 龚士琛, 闫淑琴, 李国良, 扈光辉, 苏俊, 任洪雷, 杨剑飞, 张翼飞, 等. 玉米自交系苗期耐盐性鉴定及筛选研究. 中国农学通报, 2018, 34(12): 30-35.

doi: 10.11924/j.issn.1000-6850.casb17120079
WANG M Q, LI C X, GONG S C, YAN S Q, LI G L, HU G H, SU J, REN H L, YANG J F, ZHANG Y F, et al. Salt-tolerance identification and screening of maize inbred lines at seedling stage. Chinese Agricultural Science Bulletin, 2018, 34(12): 30-35. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb17120079
[7]
杨晓杰, 李旭业, 王海艳, 于侃超, 杨建宇. 玉米自交系耐盐种质的筛选及耐盐性评价. 玉米科学, 2014, 22(4): 19-25.
YANG X J, LI X Y, WANG H Y, YU K C, YANG J Y. Screening of maize inbred line varieties with salt tolerance and the evaluation. Journal of Maize Sciences, 2014, 22(4): 19-25. (in Chinese)
[8]
李冉, 韩洁楠, 上官小川, 周婷芳, 张泽, 潘越, 刘倩倩, 杨波, 郝转芳, 翁建峰, 等. 玉米苗期耐盐性鉴定技术研究及耐盐自交系筛选. 植物遗传资源学报, 2024, 25(11): 1882-1894.
LI R, HAN J N, SHANGGUAN X C, ZHOU T F, ZHANG Z, PAN Y, LIU Q Q, YANG B, HAO Z F, WENG J F, et al. Research on salt tolerance identification technique and salt tolerance inbred lines screening of maize seedling. Journal of Plant Genetic Resources, 2024, 25(11): 1882-1894. (in Chinese)
[9]
张红雪, 史振声. 玉米耐盐性研究进展. 种子, 2015, 34(10): 47-51.
ZHANG H X, SHI Z S. Research progress of maize salt tolerance. Seed, 2015, 34(10): 47-51. (in Chinese)
[10]
王乐, 于茗兰, 陈强, 柳雨汐, 郑晓明, 逄洪波. 全基因组关联分析在5种农作物中的应用及展望. 福建农林大学学报(自然科学版), 2024, 53(3): 289-297.
WANG L, YU M L, CHEN Q, LIU Y X, ZHENG X M, PANG H B. Genome-wide association study in five crops: Application and future perspectives. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2024, 53(3): 289-297. (in Chinese)
[11]
姜洪真, 马伯军, 钱前, 高振宇. 全基因组关联分析(GWAS)在作物农艺性状研究中的应用. 农业生物技术学报, 2018, 26(7): 1244-1257.
JIANG H Z, MA B J, QIAN Q, GAO Z Y. The application of genome-wide association study (GWAS) in crop agronomic traits. Journal of Agricultural Biotechnology, 2018, 26(7): 1244-1257. (in Chinese)
[12]
ZHANG H L, YU F F, XIE P, SUN S Y, QIAO X H, TANG S Y, CHEN C X, YANG S, MEI C, YANG D K, et al. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379(6638): eade8416.
[13]
ZHOU X Y, LI J F, WANG Y Q, LIANG X Y, ZHANG M, LU M H, GUO Y, QIN F, JIANG C F. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytologist, 2022, 236(2): 479-494.
[14]
ZHANG M, LIANG X Y, WANG L M, CAO Y B, SONG W B, SHI J P, LAI J S, JIANG C F. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 2019, 5(12): 1297-1308.
[15]
ZHANG M, LI Y D, LIANG X Y, LU M H, LAI J S, SONG W B, JIANG C F. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal, 2023, 21(1): 97-108.
[16]
LUO M J, ZHANG Y X, LI J N, ZHANG P P, CHEN K, SONG W, WANG X Q, YANG J X, LU X D, LU B S, et al. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant Biotechnology Journal, 2021, 19(10): 1937-1951.

doi: 10.1111/pbi.13607 pmid: 33934485
[17]
李园, 范开建, 安泰, 李聪, 蒋俊霞, 牛皓, 曾伟伟, 衡燕芳, 李虎, 付俊杰, 等. 玉米自然群体自交系农艺性状的多环境全基因组预测初探. 植物学报, 2024, 59(6): 1041-1053.

doi: 10.11983/CBB24087
LI Y, FAN K J, AN T, LI C, JIANG J X, NIU H, ZENG W W, HENG Y F, LI H, FU J J, et al. Study on multi-environment genome-wide prediction of inbred agronomic traits in maize natural populations. Chinese Bulletin of Botany, 2024, 59(6): 1041-1053. (in Chinese)
[18]
CHOPY M, BINAGHI M, CANNAROZZI G, HALITSCHKE R, BOACHON B, HEUTINK R, BOMZAN D P, JÄGGI L, VAN GEEST G, VERDONK J C, et al. A single MYB transcription factor with multiple functions during flower development. The New Phytologist, 2023, 239(5): 2007-2025.
[19]
MENG D, HE M Y, BAI Y, XU H X, DANDEKAR A M, FEI Z J, CHENG L L. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica). New Phytologist, 2018, 217(2): 641-656.
[20]
FRANGEDAKIS E, YELINA N E, BILLAKURTHI K, HUA L, SCHREIER T, DICKINSON P J, TOMASELLI M, HASELOFF J, HIBBERD J M. MYB-related transcription factors control chloroplast biogenesis. Cell, 2024, 187(18): 4859-4876.

doi: 10.1016/j.cell.2024.06.039 pmid: 39047726
[21]
WU J W, WANG X Y, YAN R Y, ZHENG G M, ZHANG L, WANG Y, ZHAO Y J, WANG B H, PU M L, ZHANG X S, et al. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC Plant Biology, 2024, 24(1): 458.

doi: 10.1186/s12870-024-05163-9 pmid: 38797860
[22]
CAO Y B, ZHANG M, LIANG X Y, LI F R, SHI Y L, YANG X H, JIANG C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nature Communications, 2020, 11: 186.
[23]
FORESTAN C, AIESE CIGLIANO R, FARINATI S, LUNARDON A, SANSEVERINO W, VAROTTO S. Stress-induced and epigenetic- mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Scientific Reports, 2016, 6: 30446.
[24]
江杰, 王胜. 我国盐碱地成因及改良利用现状. 安徽农业科学, 2020, 48(13): 85-87.
JIANG J, WANG S. The cause of formation and improved utilization of saline-alkali land in China. Journal of Anhui Agricultural Sciences, 2020, 48(13): 85-87. (in Chinese)
[25]
孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选. 作物学报, 2024, 50(9): 2179-2186.

doi: 10.3724/SP.J.1006.2024.44030
SUN X J, HU Z, JIANG X M, WANG S J, CHEN X Q, ZHANG H Y, ZHANG H, JIANG Q Y. Identification, evaluation and screening of salt-tolerant soybean germplasm resources at seedling stage. Acta Agronomica Sinica, 2024, 50(9): 2179-2186. (in Chinese)
[26]
MIAO R Q, ZHANG Y, LIU X X, YUAN Y, ZANG W, LI Z Q, YAN X F, PANG Q Y, ZHANG A Q. Histone variant H2A.Z is required for plant salt response by regulating gene transcription. Plant, Cell & Environment, 2024, 47(7): 2691-2707.
[27]
GANDHIVEL V H, SOTELO-PARRILLA P, RAJU S, JHA S, GIREESH A, HARSHITH C Y, GUT F, VINOTHKUMAR K R, BERGER F, JEYAPRAKASH A A, et al. An Oryza-specific histone H4 variant predisposes H4 lysine 5 acetylation to modulate salt stress responses. Nature Plants, 2025, 11(4): 790-807.
[28]
RUDRABHATLA P, RAJASEKHARAN R. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses. Plant Physiology, 2002, 130(1): 380-390.

doi: 10.1104/pp.005173 pmid: 12226517
[29]
YANG Y Q, GUO Y. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 2018, 60(9): 796-804.

doi: 10.1111/jipb.12689
[30]
MITTLER R, ZANDALINAS S I, FICHMAN Y, VAN BREUSEGEM F, Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679.
[31]
WANG C F, LI X M, ZHUANG Y B, SUN W C, CAO H X, XU R, KONG F J, ZHANG D J. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation. New Phytologist, 2024, 241(5): 2176-2192.
[32]
VERMA S, NEGI N P, PAREEK S, MUDGAL G, KUMAR D. Auxin response factors in plant adaptation to drought and salinity stress. Physiologia Plantarum, 2022, 174(3): e13714.
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] SHI ShunYu, YANG Tao, PANG Bo, LI Jing, LIN YiFeng, WANG ZhengRui, FU LinCheng, ABUDUBEK Zalgamali, GAO WenWei, WU PengHao. Genome-Wide Association Analysis and Prediction of Candidate Genes for Chlorophyll Content in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(10): 1878-1895.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[5] XU TianJun, LÜ TianFang, LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan, WANG RongHuan. Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes [J]. Scientia Agricultura Sinica, 2024, 57(2): 403-415.
[6] ZHU JunJie, ZHANG XinYue, PAN MengYing, ZHANG JingWen, ZHENG Qi, LI YuLing, DONG YongBin. An EIN3/EIL Family Gene, ZmEIL9 Regulates Grain Development in Maize [J]. Scientia Agricultura Sinica, 2024, 57(18): 3522-3532.
[7] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[8] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[9] GAO GuangLiang, ZHANG KeShan, ZHAO XianZhi, XU GuoYang, XIE YouHui, ZHOU Li, ZHANG ChangLian, WANG QiGui. Identification of Molecular Markers Associated with Goose Egg Quality Through Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3894-3904.
[10] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[11] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!