Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4100-4116.doi: 10.3864/j.issn.0578-1752.2025.20.006

• BREEDING OF SALT-ALKALI TOLERANT VARIETIES • Previous Articles     Next Articles

Evaluation of Salt Tolerance in Newly Developed Zhongdan Series Maize Hybrid Varieties and Their Parental Inbred Lines

QU HaiYue1(), HAN JieNan1(), LI Ran1, ZHANG Ze1,2, LIU QianQian1, HAO ZhuanFang1, WENG JianFeng1, ZHANG DeGui1, ZHOU ZhiQiang1, XU ZhenNan1, RONG ZiGuo3, WANG JuYing3, YONG HongJun1,3(), LI MingShun1()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
    3 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-05-28 Accepted:2025-07-25 Online:2025-10-16 Published:2025-10-14
  • Contact: YONG HongJun, LI MingShun

Abstract:

【Objective】The aim of the present study was to explore the correlation between seedling-stage salt tolerance in newly developed maize hybrids and salt tolerance in their parental inbred lines, evaluate the full growth-stage salt tolerance of hybrids with high seedling-stage salt tolerance, and provide resources and data support for development of maize hybrids suitable for saline-alkaline soils.【Method】Sixteen hybrid varieties and 30 parental inbred lines were used as materials for evaluating seedling-stage salt tolerance in 2024. The experiments were conducted in greenhouses at the Institute of Crop Science, Chinese Academy of Agricultural Sciences. Two treatments were applied: CK (control) and SA (salt stress treatment). Seedling-stage salt tolerance and correlation analyses were performed by measuring seedling height and biomass. Salt-tolerant hybrids were selected, and leaf yellowing percentage and sodium ion (Na+) content were analyzed in the latest developed leaves to further validate their salt tolerance. Additionally, salt tolerance during the germination stage was tested in hybrid varieties Zhongdan 1130, Zhongdan 1112, and Zhongdan 1118, and yield measurements were carried out in saline-alkaline soils of Dongying City, Shandong Province.【Result】Under 350 mmol·L-1 NaCl stress, seedling height, fresh weight, and dry weight of the 16 hybrid varieties decreased by 53.73%-74.65% when compared with those in the control. Seven hybrids, including Zhengdan 958, Zhongdan 1130, Zhongdan 1112, and Zhongdan 1118, exhibited significantly higher morphological indices and salt tolerance coefficients than the average, demonstrating high salt tolerance. Under 250 mmol·L-1 NaCl stress, salt tolerance was validated for some hybrids. Zhengdan 958 and Zhongdan 1130 exhibited significantly lower leaf yellowing percentages and Na+ contents in their aboveground parts than the salt-sensitive hybrids Zhongdan 153 and Zhongdan 123. Correlation analysis between the salt tolerance of the hybrids and those of their parental lines revealed that the salt tolerance coefficient of the aboveground fresh weight and seedling condition under salt stress of hybrids was significantly correlated with maternal line seedling condition (P<0.05). Kompetitive allele specific PCR analysis indicated no correlation between salt tolerance of hybrids and number of favorable allelic variations at the four salt tolerance loci in the parental inbred lines. In situ trials in moderately saline-alkaline soils throughout the entire growth stage showed that Zhongdan 1130 had a yield of 6 577.50-8 034.71 kg per hectare, which was 14.35%-20.99% higher than that of Zhengdan 958. Zhongdan 1112 yielded 6 415.11-7 720.73 per hectare, with either no yield reduction or an increase of 7.22%-34.22% when compared to that of Zhengdan 958. Zhongdan 1118 yielded 6 075.45-6 958.35 kg per hectare, with a yield increase of 5.62%-10.33% when compared to that of Zhengdan 958. 【Conclusion】Salt tolerance of maize hybrids is correlated with that of parental lines; however, the correlation is significant only with the seedling condition of the maternal line. The number of favorable allelic variations in the salt-tolerance genes SOS1, HKT2, HAK4, and HKT1;2 in the parental lines was not significantly correlated with the salt tolerance of the hybrids. The newly developed hybrid Zhongdan 1130, which has high seedling-stage salt tolerance, exhibited a stable yield increase of > 14.35% in saline-alkaline soils in Shandong compared to that of Zhengdan 958, making it a suitable, high-yielding, salt-tolerant variety for adoption in the Huang-Huai-Hai region.

Key words: maize, newly bred hybrids, parental, salt tolerance, yield

Table 1

Pedigree table of maize materials"

序号 Serial number 杂交种 Hybrids 父本 Paternal 类群 Group 母本 Maternal 类群 Group
1 郑单958 Zhengdan958 昌7-2 Chang7-2 四平头Sipingtou 郑58 Zheng58 SS
2 中单1109 Zhongdan1109 CA232 NSS CA516 SS
3 中单111 Zhongdan111 CA80 SS CA193 NSS
4 中单1112 Zhongdan1112 CA270 SS CA562 NSS
5 中单1118 Zhongdan1118 CA822 SS CA699 四平头Sipingtou
6 中单1130 Zhongdan1130 CA515 NSS CA422 SS
7 中单1138 Zhongdan1138 XN8147 NSS DN2710 四平头Sipingtou
8 中单123 Zhongdan123 LX240 NSS TF9 SS
9 中单126 Zhongdan126 LX736 四平头Sipingtou XN8147 NSS
10 中单159 Zhongdan159 FAC SS LX228 NSS
11 中单153 Zhongdan153 CA178 SS CA193 NSS
12 中单1159 Zhongdan1159 LX689 NSS LX419 四平头Sipingtou
13 中单4398 Zhongdan4398 中12CA87B Zhong12CA87B NSS 中5801 Zhong5801 SS
14 中单6311 Zhongdan6311 MM501D NSS CA135 SS
15 京科968 Jingke968 京92 Jing92 四平头Sipingtou 京724 Jing724 X群X qun
16 先玉335 Xianyu335 PH4CV NSS PH6WC SS

Table 2

Classification of maize seedling condition ranking grade"

分类 Classification 苗情 SR 植株在盐胁迫下受害情况 Seedling condition under salt stress
杂交种
Hybrids
1级
Grade 1
倒一叶与倒二叶叶尖发黄,其他叶片呈绿色
Yellowing at the tips of the topmost leaf (L1) and second leaf (L2); other leaves remain green
2级
Grade 2
倒一叶全部干枯,倒二叶叶尖发黄,其他叶片呈绿色
Complete desiccation of L1; yellowing at the tip of L2; other leaves green
3级
Grade 3
倒一叶全部干枯,倒二叶黄枯大于50%,其他叶片呈绿色
Complete desiccation of L1; >50% yellowing/browning of L2; other leaves green
4级 Grade 4 叶片全部黄枯或倒伏 Entire plant exhibits yellowing, desiccation, or lodging
自交系
Inbred lines
1级
Grade 1
倒一叶未全部干枯,倒二叶发黄面积小于50%,其他叶片呈绿色
L1 not fully desiccated; <50% yellowing of L2; other leaves green
2级
Grade 2
倒一叶全部干枯,倒二叶发黄面积小于50%,倒三叶叶尖发黄,其他叶片呈绿色
Complete desiccation of L1; <50% yellowing of L2; yellowing at the tip of L3 (third leaf); other leaves green
3级
Grade 3
倒一叶全部干枯,倒二叶发黄面积大于50%,倒三叶发黄,萎蔫
Complete desiccation of L1; >50% yellowing of L2; L3 shows yellowing and wilting
4级
Grade 4
整株叶片发黄、萎蔫、枯死,包括死亡情况
Whole plant yellowed, wilted, desiccated, or dead (including mortality)

Fig. 1

Maize seedling condition ranking grade"

Table 3

Phenotypic analysis of aboveground morphology in 16 maize hybrids under control and salt stress treatments"

序号
Serial number
杂交种
Hybrid
株高 PH (cm) 地上部鲜重 SFW (g) 地上部干重 SDW (g) 苗情 SR
CK SA CK SA CK SA CK SA
1 郑单958 Zhengdan958 34.44±3.83 24.78±3.00** 1.78±0.34 0.82±0.04** 0.22±0.05 0.14±0.00** 1.00 1.25
2 中单1109 Zhongdan1109 48.20±3.40 22.14±3.58** 2.28±0.31 0.53±0.17** 0.28±0.03 0.10±0.03** 1.00 2.25
3 中单111 Zhongdan111 50.51±5.28 18.29±7.39** 2.22±0.87 0.41±0.20** 0.29±0.11 0.07±0.02** 1.25 2.50
4 中单1112 Zhongdan1112 35.59±2.78 20.45±4.63** 1.49±0.46 0.56±0.25** 0.19±0.06 0.11±0.03** 1.00 2.00
5 中单1118 Zhongdan1118 48.13±1.77 28.71±5.50** 2.06±0.36 0.91±0.25** 0.26±0.02 0.17±0.05** 1.00 1.50
6 中单1130 Zhongdan1130 42.25±3.87 22.79±5.11** 1.80±0.29 0.56±0.23** 0.20±0.03 0.11±0.04** 1.25 2.00
7 中单1138 Zhongdan1138 52.72±4.71 26.66±3.68** 2.52±0.43 0.83±0.19** 0.34±0.04 0.16±0.04** 1.75 2.00
8 中单123 Zhongdan123 55.35±5.98 17.83±5.58** 3.20±0.70 0.40±0.21** 0.30±0.02 0.07±0.03** 1.00 3.00
9 中单126 Zhongdan126 36.08±3.55 22.56±3.81** 1.38±0.55 0.45±0.16** 0.16±0.05 0.09±0.03** 1.75 2.75
10 中单159 Zhongdan159 30.08±2.89 14.31±3.99** 0.86±0.16 0.15±0.07** 0.08±0.01 0.04±0.01** 1.00 3.00
11 中单153 Zhongdan153 52.18±3.88 15.53±3.17** 2.36±0.44 0.32±0.09** 0.22±0.03 0.05±0.01** 1.00 2.25
12 中单1159 Zhongdan1159 47.69±5.94 17.74±4.56** 2.01±0.33 0.33±0.09** 0.20±0.05 0.06±0.01** 1.00 2.50
13 中单4398 Zhongdan4398 53.23±3.78 16.99±5.84** 2.48±0.40 0.39±0.20** 0.26±0.04 0.07±0.03** 1.00 2.00
14 中单6311 Zhongdan6311 46.49±4.80 21.04±5.06** 2.27±0.52 0.53±0.21** 0.22±0.06 0.10±0.03** 1.00 2.25
15 京科968 Jingke968 46.99±5.12 21.35±6.68** 2.62±0.17 0.61±0.26** 0.25±0.04 0.10±0.05** 1.00 2.50
16 先玉335 Xianyu335 47.12±6.23 25.23±4.50** 2.20±0.12 0.71±0.09** 0.27±0.03 0.13±0.01** 1.25 2.00

Fig. 2

Analysis of salt tolerance coefficients for aboveground morphological traits in 16 maize hybrids STG: Salt-tolerant group; MG: Moderate group; SSG: Salt-sensitive group"

Fig. 3

Analysis of yellowing percentage in the newest expanded leaves of maize hybrids under salt stress"

Table 4

Determination of shoot Na+ content in seven maize hybrids under control and salt stress treatments"

序号
Serial number
杂交种
Hybrids
Na+ (g·kg-1)
CK SA
1 郑单958 Zhengdan958 0.08 28.71a
2 中单1118 Zhongdan1118 0.03 36.33ab
3 中单1112 Zhongdan1112 0.18 39.92ab
4 中单1130 Zhongdan1130 0.15 43.67abc
5 中单159 Zhongdan159 0.20 62.37c
6 中单123 Zhongdan123 0.06 55.20bc
7 中单153 Zhongdan153 0.25 43.10ab

Fig. 4

Growth response of maize parental inbred lines after 15-day salt stress treatment"

Table 5

Phenotypic analysis of aboveground morphology of maize parental inbred lines under control and salt stress treatments"

序号Serial number 杂交种
Hybrids
母本
Maternal
株高 PH (cm) 株高降
低幅度
PRPH (%)
苗情
SR
父本
Paternal
株高 SH (cm) 株高降
低幅度
PRPH (%)
苗情
SR
CK SA CK SA
1 郑单958
Zhengdan958
郑58
Zheng58
33.46±4.13 23.40±2.07** 30.07 1.00 昌7-2
Chang7-2
40.37±2.83 31.05±4.45* 23.08 1.25
2 中单1118
Zhongdan1118
CA699 39.37±4.84 27.33±6.33** 30.59 2.00 CA822 39.72±3.88 31.63±5.53* 20.36 2.25
3 中单1112
Zhongdan1112
CA562 33.31±4.94 24.81±5.45** 25.50 1.75 CA270 32.93±3.17 16.38±1.35* 50.26 4.00
4 中单126
Zhongdan126
XN8147 32.86±3.78 26.24±2.83** 20.13 1.50 LX736 34.86±4.96 25.75±4.76* 26.13 2.75
5 中单1130
Zhongdan1130
CA422 35.69±3.30 27.61±4.70** 22.65 2.00 CA515 43.43±3.92 27.42±3.58* 36.88 1.25
6 先玉335
Xianyu335
PH6WC 44.65±3.90 30.76±5.58** 31.10 1.50 PH4CV 39.50±2.27 20.22±3.77* 48.82 3.75
7 中单1138
Zhongdan1138
DN2710 47.41±4.52 27.50±4.74** 42.00 2.00 XN8147 32.86±3.78 26.24±2.83* 20.13 1.50
8 中单6311
Zhongdan6311
CA135 41.67±3.67 / / 4.00 MM501D 37.79±4.70 18.20±3.81* 51.83 3.00
9 中单159
Zhongdan159
LX228 34.18±4.49 / / 4.00 FAC 35.01±3.19 26.32±4.19* 24.82 2.75
10 京科968
Jingke968
京724
Jing724
33.58±10.55 25.70±8.43** 23.23 1.50 京92
Jing92
34.97±4.87 17.80±3.82* 49.09 3.50
11 中单1109
Zhongdan1109
CA516 44.36±3.65 29.95±5.86** 32.49 1.75 CA232 43.32±3.83 31.05±4.04* 28.32 1.25
12 中单1159
Zhongdan1159
LX419 31.40±3.50 19.99±2.87** 36.35 2.50 LX689 28.93±4.78 18.70±3.18* 35.36 2.75
13 中单111
Zhongdan111
CA193 51.01±4.40 30.18±7.03** 40.84 3.00 CA80 / / / /
14 中单4398
Zhongdan4398
中5801
Zhong5801
34.44±5.51 27.26±3.88** 20.87 1.75 中12CA87B
Zhong12CA87B
37.87±6.39 26.05±4.22* 31.21 1.50
15 中单123
Zhongdan123
TF9 34.84±6.92 26.44±5.85** 24.11 2.50 LX240 35.91±6.98 26.41±3.74* 26.43 2.25
16 中单153
Zhongdan153
CA193 51.01±4.40 30.18±7.03** 40.84 3.00 CA178 32.11±5.50 24.27±4.69* 24.42 2.25

Fig. 5

Correlation analysis of salt tolerance indices between hybrids and parental inbred lines"

Fig. 6

Comparative growth analysis of salt-tolerant hybrids and their parental inbred lines under salt stress treatment"

Fig. 7

Quantification of favorable allelic loci pyramided in salt-tolerance genes of parental inbred lines"

Fig. 8

Analysis of salt tolerance indices in salt-tolerant maize hybrids during germination under control and salt stress conditions"

Table 6

Yield evaluation of different hybrid varieties in saline-alkali soils (kg·hm-2)"

杂交种
Hybrid
山东垦利 Shandong Kenli 山东农高区 Shandong Nonggaoqu 山东垦利 Shandong Kenli
5 m长小区 5 m experimental plot 5 m长小区 5 m experimental plot 0.07 hm2
郑单958 Zhengdan958 6306.60 5752.28±1623.13 6641.08±749.96
中单1130 Zhongdan1130 7367.85 6577.55±1035.00 8034.71±1328.48
中单1112 Zhongdan1112 6761.85 7720.73±2429.23 6415.11±202.21
中单1118 Zhongdan1118 6958.35 6075.38±271.00 \
先玉335 Xianyu335 5093.85 6323.35±643.15 \

Fig. 9

Ear trait performance of five maize hybrids under saline-alkali field conditions"

[1]
LUNA D F, AGUIRRE A, PITTARO G, BUSTOS D, CIACCI B, TALEISNIK E. Nutrient deficiency and hypoxia as constraints to Panicum coloratum growth in alkaline soils. Grass and Forage Science, 2017, 72(4): 640-653.
[2]
ZHOU H P, SHI H F, YANG Y Q, FENG X X, CHEN X, XIAO F, LIN H H, GUO Y. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 2024, 51(1): 16-34.
[3]
ZHU J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
[4]
SINGHAL R K, SAHA D, SKALICKY M, MISHRA U N, CHAUHAN J, BEHERA L P, LENKA D, CHAND S, KUMAR V, DEY P, et al. Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Frontiers in Plant Science, 2021, 12: 670369.
[5]
Food and Agriculture Organization of the United Nations. Global Status of Salt-Affected Soils. FAO, 2024.
[6]
杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27.
YANG J S, YAO R J, WANG X P, XIE W P, ZHANG X, ZHU W, ZHANG L, SUN R J. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. (in Chinese)
[7]
姜佩弦, 张凯, 王艺桥, 张鸣, 曹一博, 蒋才富. 玉米耐盐分子机制研究进展. 植物遗传资源学报, 2022, 23(1): 49-60.

doi: 10.13430/j.cnki.jpgr.20210812004
JIANG P X, ZHANG K, WANG Y Q, ZHANG M, CAO Y B, JIANG C F. Recent advance of molecular understanding of salt tolerance in maize. Journal of Plant Genetic Resources, 2022, 23(1): 49-60. (in Chinese)
[8]
MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[9]
郝德荣, 程玉静, 徐辰武, 冒宇翔, 彭长俊, 薛林. 玉米耐盐种质筛选及群体遗传结构分析. 植物遗传资源学报, 2013, 14(6): 1153-1160.

doi: 10.13430/j.cnki.jpgr.2013.06.025
HAO D R, CHENG Y J, XU C W, MAO Y X, PENG C J, XUE L. Screening of maize germplasms for salt-tolerance and evaluation of population genetic structure. Journal of Plant Genetic Resources, 2013, 14(6): 1153-1160. (in Chinese)
[10]
袁文娅, 刘秀峰, 杨兆顺, 楼辰军, 许高平. 玉米亲本与杂交种间耐盐性与种子活力的研究. 农业科技通讯, 2018(4): 70-72.
YUAN W Y, LIU X F, YANG Z S, LOU C J, XU G P. Study on salt tolerance and seed vigor between maize parents and hybrids. Bulletin of Agricultural Science and Technology, 2018(4): 70-72. (in Chinese)
[11]
李乔, 李明, 晏君瑶, 高祺, 朴琳, 肖佳雷. 玉米耐盐碱生理特性的杂种优势及遗传分析. 玉米科学, 2019, 27(2): 21-28, 35.
LI Q, LI M, YAN J Y, GAO Q, PIAO L, XIAO J L. Heterosis and genetic analysis of physiological characteristics of salt and alkali tolerance in maize. Journal of Maize Sciences, 2019, 27(2): 21-28, 35. (in Chinese)
[12]
ZHANG X G, LIU J, HUANG Y X, WU H Y, HU X L, CHENG B J, MA Q, ZHAO Y. Comparative transcriptomics reveals the molecular mechanism of the parental lines of maize hybrid An'nong876 in response to salt stress. International Journal of Molecular Sciences, 2022, 23(9): 5231.
[13]
陆程张, 张春宵, 李淑芳, 李万军, 刘学岩, 郑大浩, 李晓辉. 吉林省200份骨干玉米自交系的芽、苗期耐盐碱性综合鉴评. 东北农业科学, 2022, 47(1): 26-30, 50.
LU C Z, ZHANG C X, LI S F, LI W J, LIU X Y, ZHENG D H, LI X H. Comprehensive identification and evaluation on saline-alkaline tolerance of 200 maize elite inbred lines at bud and seedling stages in Jilin Province. Journal of Northeast Agricultural Sciences, 2022, 47(1): 26-30, 50. (in Chinese)
[14]
朱嘉, 裴玉贺, 陈祥静, 宋希云. 11个玉米杂交种萌发期耐盐性综合评价. 贵州农业科学, 2024, 52(11): 8-15.
ZHU J, PEI Y H, CHEN X J, SONG X Y. Comprehensive evaluation on salt tolerance of 11 maize hybrids at germination stages. Guizhou Agricultural Sciences, 2024, 52(11): 8-15. (in Chinese)
[15]
线进红, 张云芳, 庄泽龙, 姬祥卓, 白明兴, 彭云玲. 42份玉米自交系苗期耐盐性的综合评价. 甘肃农业大学学报, 2023, 58(4): 95-105.
XIAN J H, ZHANG Y F, ZHUANG Z L, JI X Z, BAI M X, PENG Y L. Comprehensive evaluation of salt tolerance of 42 maize inbred lines during seedling stage. Journal of Gansu Agricultural University, 2023, 58(4): 95-105. (in Chinese)
[16]
刘鸿, 张富来, 田慧娟, 胡梦婷, 李瑞峰, 杨旭东, 张丹. 不同玉米品种萌发期及苗期的耐盐性研究. 种子, 2023, 42(3): 56-62, 69.
LIU H, ZHANG F L, TIAN H J, HU M T, LI R F, YANG X D, ZHANG D. Study on salt tolerance of different maize varieties at germination and seedling stages. Seed, 2023, 42(3): 56-62, 69. (in Chinese)
[17]
高英波, 张慧, 薛艳芳, 匡朴, 钱欣, 代红翠, 李源方, 王竹, 韩小伟, 李宗新. 不同夏玉米品种耐盐性综合评价与耐盐品种筛选. 玉米科学, 2020, 28(2): 33-40.
GAO Y B, ZHANG H, XUE Y F, KUANG P, QIAN X, DAI H C, LI Y F, WANG Z, HAN X W, LI Z X. Comprehensive evaluation of salt tolerance and screening for salt tolerance accessions of different summer maize varieties. Journal of Maize Sciences, 2020, 28(2): 33-40. (in Chinese)
[18]
桑立君, 冯彦辉, 许世海, 白岩, 张笑晴, 刘青春, 刘禹夫, 张瀚竹. 玉米杂交种耐盐碱性的主成分分析及综合评价. 新农民, 2024(29): 58-60.
SANG L J, FENG Y H, XU S H, BAI Y, ZHANG X Q, LIU Q C, LIU Y F, ZHANG H Z. Principal component analysis and comprehensive evaluation of salt and alkali tolerance of maize hybrids. New Farmers, 2024(29): 58-60. (in Chinese)
[19]
刘倩倩, 李冉, 周婷芳, 张泽, 上官小川, 潘越, 张德贵, 雍洪军, 李明顺, 韩洁楠. 211份玉米自交系萌发期耐盐性鉴定. 作物杂志, 2024(4): 62-70.
LIU Q Q, LI R, ZHOU T F, ZHANG Z, SHANGGUAN X C, PAN Y, ZHANG D G, YONG H J, LI M S, HAN J N. Identification of salt tolerance of 211 maize inbred lines at germination stage. Crops, 2024(4): 62-70. (in Chinese)
[20]
李冉, 韩洁楠, 上官小川, 周婷芳, 张泽, 潘越, 刘倩倩, 杨波, 郝转芳, 翁建峰, 等. 玉米苗期耐盐性鉴定技术研究及耐盐自交系筛选. 植物遗传资源学报, 2024, 25(11): 1882-1894.
LI R, HAN J N, SHANGGUAN X C, ZHOU T F, ZHANG Z, PAN Y, LIU Q Q, YANG B, HAO Z F, WENG J F, et al. Research on salt tolerance identification technique and salt tolerance inbred lines screening of maize seedling. Journal of Plant Genetic Resources, 2024, 25(11): 1882-1894. (in Chinese)
[21]
周婷芳, 韩洁楠, 李冉, 刘倩倩, 张泽, 王振华, 马宝新, 路明, 张林, 韩业辉, 等. 东北区118份玉米杂交种萌发期耐盐性分析. 作物杂志, 2025(5):1-10.
ZHOU T F, HAN J N, LI R, LIU Q Q, ZHANG Z, WANG Z H, MA B X, LU M, ZHANG L, HAN Y H, et al. Analysis of salt tolerance at the germination stage of 118 maize hybrid varieties in the northeast region. Crops, 2025(5):1-10. (in Chinese)
[22]
ZHOU X Y, LI J F, WANG Y Q, LIANG X Y, ZHANG M, LU M H, GUO Y, QIN F, JIANG C F. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytologist, 2022, 236(2): 479-494.
[23]
CAO Y B, LIANG X Y, YIN P, ZHANG M, JIANG C F. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist, 2019, 222(1): 301-317.
[24]
ZHANG M, LIANG X Y, WANG L M, CAO Y B, SONG W B, SHI J P, LAI J S, JIANG C F. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 2019, 5(12): 1297-1308.
[25]
ZHANG M, LI Y D, LIANG X Y, LU M H, LAI J S, SONG W B, JIANG C F. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal, 2023, 21(1): 97-108.
[26]
TIAN H J, LIU H, ZHANG D, HU M T, ZHANG F L, DING S Q, YANG K Z. Screening of salt tolerance of maize (Zea mays L.) lines using membership function value and GGE biplot analysis. PeerJ, 2024, 12: e16838.
[27]
赵绍赓, 刘晓强, 王玉玺, 徐佳睿, 邓馨, 郑军, 王红武. 玉米萌发期耐盐性评价及其杂种优势模式分析. 植物遗传资源学报, 2025, 26(1): 79-89.
ZHAO S G, LIU X Q, WANG Y X, XU J R, DENG X, ZHENG J, WANG H W. Evaluation of salt tolerance and analysis of their heterosis patterns in maize during germination period. Journal of Plant Genetic Resources, 2025, 26(1): 79-89. (in Chinese)
[28]
王秀华, 张寒, 潘香逾, 刘国锋, 赵岩. 玉米成株期耐盐性评价与耐盐资源筛选. 分子植物育种, 2020, 18(2): 685-692.
WANG X H, ZHANG H, PAN X Y, LIU G F, ZHAO Y. Evaluation of salt tolerance and selection of salt tolerant germplasm in maize at adult stage. Molecular Plant Breeding, 2020, 18(2): 685-692. (in Chinese)
[29]
贾丹莉, 郭军玲, 王永亮, 郭彩霞, 杨治平. 盐胁迫下不同玉米品种耐盐性筛选. 山西农业科学, 2016, 44(8): 1083-1086.
JIA D L, GUO J L, WANG Y L, GUO C X, YANG Z P. Screening of salt tolerance of different maize varieties under salt stress. Journal of Shanxi Agricultural Sciences, 2016, 44(8): 1083-1086. (in Chinese)
[30]
匡朴. 盐胁迫对不同耐盐性玉米品种萌发、苗期生长及产量的影响[D]. 泰安: 山东农业大学, 2018.
KUANG P. Effects of salt stress on seed germination, seedling grow[D]. Taian: Shandong Agricultural University, 2018. (in Chinese)
[31]
肖万欣, 赵海岩, 刘晶, 史磊, 汪经宏, 赵勐, 常程, 张书萍. 不同玉米杂交种耐盐碱性鉴定. 玉米科学, 2011, 19(6): 14-19, 24.
XIAO W X, ZHAO H Y, LIU J, SHI L, WANG J H, ZHAO M, CHANG C, ZHANG S P. Saline-alkali tolerance identification of different maize hybrids. Journal of Maize Sciences, 2011, 19(6): 14-19, 24. (in Chinese)
[32]
张春宵, 袁英, 刘文国, 李文华, 王丹, 李万军, 李晓辉. 玉米杂交种苗期耐盐碱筛选与大田鉴定的比较分析. 玉米科学, 2010, 18(5): 14-18.
ZHANG C X, YUAN Y, LIU W G, LI W H, WANG D, LI W J, LI X H. Comparative analysis between salt-alkali tolerance in seedling stage and production in the field of maize hybrid. Journal of Maize Sciences, 2010, 18(5): 14-18. (in Chinese)
[33]
许政晗. 9个春玉米杂交种全生育期耐盐性评价[D]. 呼和浩特: 内蒙古农业大学, 2024.
XU Z H. Evaluation of salt tolerance of 9 spring maize hybrids in the whole growth period[D]. Hohhot: Inner Mongolia Agricultural University, 2024. (in Chinese)
[34]
LIANG X Y, YIN P, LI F R, CAO Y B, JIANG C F. ZmGolS 1 underlies natural variation of raffinose content and salt tolerance in maize. Journal of Genetics and Genomics, 2025, 52(3): 346-355.
[35]
SCHUBERT S, NEUBERT A, SCHIERHOLT A, SÜMER A, ZÖRB C. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Science, 2009, 177(3): 196-202.
[36]
AL SAMSUL HUQE M, HAQUE M S, SAGAR A, UDDIN M N, HOSSAIN M A, HOSSAIN A Z, RAHMAN M M, WANG X K, AL-ASHKAR I, UEDA A, et al. Characterization of maize hybrids (Zea mays L.) for detecting salt tolerance based on morpho- physiological characteristics, ion accumulation and genetic variability at early vegetative stage. Plants, 2021, 10(11): 2549.
[37]
陈勋基, 陈果, 常晓春, 足木热木·吐尔逊, 李建平, 郝晓燕, 高升旗, 黄全生. 玉米幼苗盐胁迫条件下的生理响应机制. 新疆农业科学, 2018, 55(4): 627-634.

doi: 10.6048/j.issn.1001-4330.2018.04.005
CHEN X J, CHEN G, CHANG X C, ZU MU RE MU·T E X, LI J P, HAO X Y, GAO S Q, HUANG Q S. Physiological response mechanism of corn seedlings under salt stress. Xinjiang Agricultural Sciences, 2018, 55(4): 627-634. (in Chinese)
[38]
王欢, 张春宵, 李淑芳, 李万军, 杨德光. 玉米杂交种四单19及其双亲耐盐碱性差异分析. 玉米科学, 2019, 27(1): 25-28, 37.
WANG H, ZHANG C X, LI S F, LI W J, YANG D G. Salt-alkali tolerance analysis of maize hybrid Sidan 19 and its parents. Journal of Maize Sciences, 2019, 27(1): 25-28, 37. (in Chinese)
[39]
RIZK M S, ASSAHA D V M, MEKAWY A M M, SHALABY N E, RAMADAN E A, EL-TAHAN A M, IBRAHIM O M, METWELLY H I F, OKLA M K, MARIDUEÑA-ZAVALA M G, et al. Comparative analysis of salinity tolerance mechanisms in two maize genotypes: Growth performance, ion regulation, and antioxidant responses. BMC Plant Biology, 2024, 24(1): 818.

doi: 10.1186/s12870-024-05533-3 pmid: 39215238
[40]
董菁, 张春宵, 刘学岩, 金峰学, 刘文平, 吴委林, 李晓辉. 玉米苗期根部比较转录组分析揭示耐盐性差异机制. 玉米科学, 2023, 31(6): 30-40.
DONG J, ZHANG C X, LIU X Y, JIN F X, LIU W P, WU W L, LI X H. Comparative transcriptome analysis of maize seedling root reveals the different mechanism of salt tolerance. Journal of Maize Sciences, 2023, 31(6): 30-40. (in Chinese)
[41]
张昭杨, 庞军玲, 韩梅, 冷鹏飞, 赵军. 转基因ABP9玉米株系的耐盐性分析. 生物技术通报, 2019, 35(5): 48-57.

doi: 10.13560/j.cnki.biotech.bull.1985.2019-0007
ZHANG Z Y, PANG J L, HAN M, LENG P F, ZHAO J. Characterization of the salt tolerance of transgenic maize line expressing ABP9. Biotechnology Bulletin, 2019, 35(5): 48-57. (in Chinese)
[42]
JINGE TIAN C W. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365(6454): 658-664.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[10] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[11] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[12] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[13] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[14] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[15] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!