Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2805-2820.doi: 10.3864/j.issn.0578-1752.2025.14.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Fertilization on Phosphorus Adsorption and Desorption Characteristics of Fluvo-Aquic Soils

GUO DouDou1,2(), ZHANG KeKe1,2, HUANG ShaoMin1,2,*(), SONG Xiao1,2, ZHANG ShuiQing1,2, YUE Ke1,2, DING ShiJie1,2, GUO TengFei1,2   

  1. 1 Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    2 Beijing Changping Soil Quality National Observation and Research Station, Beijing 100086
  • Received:2024-09-13 Accepted:2025-02-09 Online:2025-07-17 Published:2025-07-17
  • Contact: HUANG ShaoMin

Abstract:

【Objective】Through long-term experiments, this study analyzed the effects of fertilization on the phosphorus adsorption-desorption characteristics in fluvo-aquic soils, aiming to reveal how different fertilization practices influence phosphorus availability and provide a theoretical basis for the efficient use of phosphorus. 【Method】Based on the "National Long-term Monitoring Station of Fluvo-aquic Soil Fertility and Fertilizer Effects", the isothermal adsorption-desorption experiments were conducted on soils under seven typical fertilization treatments over a continuous 31-year period. These treatments included: only nitrogen fertilizer (N2), only nitrogen and potassium fertilizers (N2K), low nitrogen fertilizer+phosphorus and potassium fertilizers (N1PK), medium nitrogen fertilizer+phosphorus and potassium fertilizers (N2PK), high nitrogen fertilizer+phosphorus and potassium fertilizers (N4PK), nitrogen, phosphorus, and potassium fertilizers+organic fertilizer (N2PK+M), and nitrogen, phosphorus, and potassium fertilizers+maize straw return (N2PK+S). The Langmuir equation was used to analyze the impacts of fertilization on phosphorus adsorption-desorption characteristics, and the Hierarchical Partitioning (HP) Model in redundancy analysis (RDA) was employed to quantify the influence of soil physicochemical properties on key parameters. 【Result】As the external phosphorus amount increased, the amount of phosphorus adsorbed by the soil increased, but the adsorption rate decreased. Soils with only chemical fertilizers had higher phosphorus adsorption rates (Ar) compared with those with combined organic and inorganic fertilizers. Soils without phosphorus fertilization had the highest adsorption affinity constant (Ka), followed by soils with long-term chemical fertilization, and the lowest in soils with organic-inorganic combined fertilization. The maximum phosphorus adsorption capacity (Qm) and maximum buffering capacity (MBC) were the highest under N2PK treatment. In comparison, Qm decreased by 13.7%, 16.0%, 22.8%, and 21.5% under N2PK+M, N2PK+S, N2, and N2K treatments, respectively, with the lowest value observed in the no-phosphorus treatment; MBC decreased by 26.8%, 28.4%, 15.6%, and 11.7% in the same treatments, respectively, with the lowest value found in the organic-inorganic combined fertilization treatment. The degree of phosphorus saturation (DPS) under N2PK+M treatment reached 21.3%, significantly higher than other treatments, followed by the N4PK and N2PK+S treatments. During the phosphorus desorption process, the amount of desorbed phosphorus increased with the increase in solution phosphorus concentration, while the desorption rate decreased. The phosphorus desorption capacity under N2PK+M treatment was significantly higher than that under other treatments, with the highest maximum phosphorus desorption amount (Dm), desorption rate (Dr), and readily desorption phosphorus (RDP). The N2K treatment had the lowest Dm value, while the N1PK treatment had the lowest Dr and RDP values. The results of physicochemical factor ranking based on the HP model show that TP, Olsen-P, ExCa, CaCO3, and SOM were the top five factors influencing phosphorus adsorption parameters, with contribution rates of 18.0%, 16.0%, 12.6%, 11.4%, and 8.8%, respectively. Olsen-P, TN, ExCa, SOM, and AN are the top five factors influencing phosphorus desorption parameters, with contribution rates of 17.9%, 12.9%, 12.6%, 9.8%, and 9.0%, respectively. 【Conclusion】Long-term application of nitrogen, phosphorus, and potassium fertilizers increased soil phosphorus adsorption intensity and reduced phosphorus desorption capacity of fluvo-aquic soils, and soils with a lower nitrogen-to-phosphorus ratio showed even lower phosphorus desorption capacity. The addition of organic fertilizers could reduce phosphorus adsorption capacity and enhance desorption ability, although excessive application organic fertilizers might lead to phosphorus loss. The combination of chemical fertilizers and straw return could reduce soil phosphorus adsorption capacity, which was an effective measure to enhance phosphorus activity in fluvo-aquic soil. Olsen-P and ExCa were the primary factors determining the phosphorus adsorption-desorption characteristics of fluvo-aquic soil. Additionally, an increase in total phosphorus helped reduce phosphorus adsorption capacity, while an increase in total nitrogen contributed to enhancing phosphorus desorption capacity.

Key words: long-term fertilization, fluvo-aquic soils, phosphorus adsorption and desorption, Hierarchical Partitioning Model

Table 1

The average annual nutrients input in different fertilization treatments over 31 years"

处理
Treatment
化肥 Chemical fertilizer (kg∙hm-2) 有机肥 Organic fertilizer (kg∙hm-2) 玉米秸秆 Maize straw (kg∙hm-2)
N P K N P K N P K
N2 352.5 0.0 0.0
N2K 352.5 0.0 146.3
N1PK 85.3 77.0 146.3
N2PK 352.5 77.0 146.3
N4PK 388.5 103.0 195.8 111.8 68.8 84.2
N2PK+M 274.3 77.0 146.3 115.5 68.2 88.3
N2PK+S 274.3 77.0 146.3 77.1 10.9 166.1

Table 2

Physicochemical properties of fluvo-aquic soil under different long-term fertilization treatments"

处理
Treatment
有机质
Organic matter
(g∙kg-1)
速效磷
Olsen- P
(mg∙kg-1)
全磷
Total P
(g∙kg-1)
pH 碳酸钙
CaCO3
(g∙kg-1)
交换性钙
Exchangeable calcium
(g∙kg-1)
黏粒含量
Clay
(%)
全氮
Total N
(g∙kg-1)
碱解氮
Alkaline nitrogen
(mg∙kg-1)
速效钾
Available K
(mg∙kg-1)
全钾
Total K
(g∙kg-1)
N2 13.5bc 2.5e 0.57e 8.29a 66.8ab 1.79d 18.94a 0.72e 69.3d 70.5f 16.1a
N2K 11.3d 2.9e 0.60e 8.30a 70.3a 1.83d 17.69ab 0.84de 82.3bc 165.3b 16.6a
N1PK 12.4cd 30.6c 1.07c 8.27ab 71.4a 1.88d 15.74b 0.89d 75.5cd 120.1d 16.5a
N2PK 14.9b 22.5d 0.99d 8.22bc 71.6a 2.10c 18.74a 0.93cd 71.1cd 99.7e 16.3a
N4PK 20.2a 38.1b 1.43a 8.17cd 59.5c 2.59c 17.41ab 1.20b 92.8ab 109.4de 16.5a
N2PK+M 21.4a 68.8a 1.31b 8.15cd 59.1c 3.29b 18.65a 1.35a 99.6a 181.3a 16.5a
N2PK+S 20.6a 27.7c 1.05c 8.14d 61.5bc 3.41a 17.85a 1.06c 92.4ab 149.4c 16.6a

Fig. 1

Phosphorus adsorption isotherms under different fertilization treatments"

Fig. 2

Variation of soil phosphorus adsorption rate with the concentration of phosphorus in the added solution"

Table 3

Isothermal adsorption equations and parameters in different fertilizer treatments soil"

处理
Treatment
Langmuir方程
Langmuir adsorption equation
R2 吸附亲和力常数
Adsorption affinity constant (Ka)
最大吸磷量
Maximum P adsorption capacity, Qm (mg∙kg-1)
最大缓冲容量
Maximum buffer capacity, MBC (mg∙kg-1)
磷素吸附饱和度
Degree of P saturation, DPS (%)
N2 C/Q = 0.00505 C+0.0329 0.976 0.153a 198.0cd 30.4c 0.66e
N2K C/Q = 0.00513 C+0.0315 0.982 0.163a 194.8d 31.8bc 0.21e
N1PK C/Q = 0.00415 C+0.0296 0.954 0.140ab 240.9ab 33.8ab 6.64d
N2PK C/Q = 0.00396 C+0.0278 0.963 0.143ab 252.3a 36.0a 6.42d
N4PK C/Q = 0.00422 C+0.0307 0.973 0.137ab 237.2ab 32.5bc 9.53b
N2PK+M C/Q = 0.00549 C+0.0380 0.978 0.121b 217.6bc 26.3d 21.23a
N2PK+S C/Q = 0.00472 C+0.0388 0.939 0.122b 211.9cd 25.8d 7.79c

Fig. 3

Phosphorus desorption isotherms under different fertilization treatments"

Fig. 4

Characteristics of P desorption rate under different phosphorus concentrations"

Table 4

Isothermal desorption equations and parameters in different fertilizer treatments soil"

处理
Treatment
Langmuir方程
Langmuir adsorption equation
R2 磷解吸常数
P desorption constant, Kd
最大解吸磷量
Maximum P desorption amount, Dm (mg∙kg-1)
平均解吸率
Average of P desorption
rate, Dr (%)
易解吸磷量
Readily desorption P, RDP (mg∙kg-1)
N2 C/D = 0.03056 C+0.2375 0.978 0.129d 30.6bc 15.5c 5.6bc
N2K C/D = 0.03411 C+0.1412 0.910 0.242bc 29.3c 15.6c 4.3c
N1PK C/D = 0.02891 C+0.292 0.881 0.126d 34.7ab 14.7d 3.0c
N2PK C/D = 0.03212 C+0.0624 0.931 0.515a 31.1bc 18.9b 5.4bc
N4PK C/D = 0.02902 C+0.0971 0.823 0.299b 34.5ab 20.3b 5.9bc
N2PK+M C/D = 0.02708 C+0.0475 0.874 0.570a 37.4a 30.3a 8.3a
N2PK+S C/D = 0.03059 C+0.1621 0.866 0.189cd 33.2abc 19.6b 7.4a

Fig. 5

The correlation between soil property indexes and phosphorus adsorption and desorption parameters"

Table 5

Hierarchical partitioning results of soil physicochemical properties on the characteristic parameters of phosphorus adsorption and desorption"

变量
Variable
磷吸附 P adsorption 磷解吸 P desorption
单独解释
Unique
平均共同
解释
Average shared
单个贡献
Individual importance
单个贡献率
Percentage of individual importance (%)
P
P value
单独解释
Unique
平均共同
解释
Average shared
单个贡献
Individual importance
单个贡献率
Percentage of individual importance (%)
P
P value
SOM 0.027 0.051 0.078 8.84 0.181 0.006 0.072 0.0787 9.84 0.140
AN 0.008 0.052 0.060 6.74 0.326 0.063 0.009 0.0720 9.00 0.211
Olsen-P 0.042 0.099 0.141 15.95 0.014 0.091 0.053 0.1435 17.94 0.017
AK 0.003 0.053 0.056 6.38 0.319 0.027 0.017 0.0444 5.55 0.473
TN 0.004 0.073 0.077 8.69 0.351 0.036 0.068 0.1034 12.92 0.065
TP 0.070 0.089 0.159 18.03 0.012 0.023 0.043 0.0661 8.26 0.253
TK 0.038 -0.014 0.025 2.79 0.718 0.018 -0.002 0.0157 1.96 0.927
pH 0.024 0.032 0.056 6.33 0.381 0.018 0.051 0.0691 8.64 0.211
Clay 0.016 0.004 0.020 2.28 0.808 0.077 -0.005 0.0713 8.91 0.217
CaCO3 0.081 0.020 0.101 11.42 0.102 0.017 0.018 0.0351 4.39 0.608
ExCa 0.061 0.050 0.111 12.57 0.829 0.047 0.054 0.1010 12.63 0.072
Total 0.374 0.509 0.883 100.0 0.424 0.377 0.800 100.0

Fig. 6

The ranking of individual contribution rates of soil physicochemical properties to the characteristic parameters of phosphorus adsorption and desorption from the Hierarchical Partitioning Model"

[1]
曹志洪, 李庆逵. 黄土性土壤对磷的吸附与解吸. 土壤学报, 1988, 25(3): 218-226.
CAO Z H, LI Q K. Phosphorus sorption and desorption isotherms for some loessial soils of North China plain. Acta Pedologica Sinica, 1988, 25(3): 218-226. (in Chinese)
[2]
周龙, 苏丽珍, 王思睿, 王瑞雪, 普正仙, 郑毅, 汤利. 间作对红壤磷素吸附解吸平衡效应的影响. 中国生态农业学报(中英文), 2021, 29(11): 1867-1878.
ZHOU L, SU L Z, WANG S R, WANG R X, PU Z X, ZHENG Y, TANG L. Effect of intercropping on balancing effect of absorption and desorption characteristics of phosphorus in red soil. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1867-1878. (in Chinese)
[3]
KEDIR A J, NYIRANEZA J, GALAGEDARA L, CHEEMA M, HAWBOLDT K A, MCKENZIE D B, UNC A. Phosphorus adsorption characteristics in forested and managed podzolic soils. Soil Science Society of America Journal, 2021, 85(2): 249-262.
[4]
BAKER D B, JOHNSON L T, CONFESOR R B, CRUMRINE J P. Vertical stratification of soil phosphorus as a concern for dissolved phosphorus runoff in the Lake Erie basin. Journal of Environmental Quality, 2017, 46(6): 1287-1295.

doi: 10.2134/jeq2016.09.0337 pmid: 29293833
[5]
DUTTA D, MEENA A L, CHETHAN KUMAR G, MISHRA R P, GHASAL P C, KUMAR A, CHAUDHARY J, BHANU C, KUMAR V, KUMAR A, TEWARI R B, PANWAR A S. Long term effect of organic, inorganic and integrated nutrient management on phosphorous dynamics under different cropping systems of typic Ustochrept soil of India. Communications in Soil Science and Plant Analysis, 2020, 51(21): 2746-2763.
[6]
YAN C, YAN S S, HOU Z F, DONG S K, GONG Z P, ZHANG Z X. Phosphorus adsorption characteristics of soil with rice straw retention in northeast China. Ekoloji Dergisi, 2019, 28(107): 1671-1678.
[7]
夏海勇, 王凯荣. 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009, 15(6): 1303-1310.
XIA H Y, WANG K R. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1303-1310. (in Chinese)
[8]
王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平, GILLES C. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, GILLES C. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
[9]
刘彦伶, 李渝, 张萌, 张雅蓉, 黄兴成, 蒋太明, 张文安. 长期不同施肥对黄壤磷素吸附-解吸特性的影响. 植物营养与肥料学报, 2021, 27(3): 450-459.
LIU Y L, LI Y, ZHANG M, ZHANG Y R, HUANG X C, JIANG T M, ZHANG W A. Effects of long-term fertilization on phosphorus adsorption and desorption characters in yellow soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 450-459. (in Chinese)
[10]
VON W R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical Transactions, 2006, 7: 6.

pmid: 16768791
[11]
徐秋桐, 张莉, 章明奎. 不同有机废弃物对土壤磷吸附能力及有效性的影响. 农业工程学报, 2014, 30(22): 236-244.
XU Q T, ZHANG L, ZHANG M K. Effects of different organic wastes on phosphorus sorption capacity and availability in soils. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 236-244. (in Chinese)
[12]
李悦. 不同有机质含量黑土磷吸附—解吸特性的研究[D]. 哈尔滨: 东北农业大学, 2018.
LI Y. Study on phosphorus adsorption-desorption characteristics of black soil with different organic matter content[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[13]
王彦, 张进忠, 王振华, 李太魁, 贺春凤, 朱波. 四川盆地丘陵区农田土壤对磷的吸附与解吸特征. 农业环境科学学报, 2011, 30(10): 2068-2074.
WANG Y, ZHANG J Z, WANG Z H, LI T K, HE C F, ZHU B. Adsorption and desorption characteristics of phosphorus on cropland soils in the hilly area of Sichuan basin, China. Journal of Agro-Environment Science, 2011, 30(10): 2068-2074. (in Chinese)
[14]
张成兰, 刘春增, 吕玉虎, 李本银, 张琳, 丁丽, 杜光辉, 张香凝, 郑春风, 张济世, 李敏, 曹卫东. 不同年限紫云英配施减量化肥对土壤磷吸附解吸特征的影响. 草业学报, 2024, 33(7): 41-52.

doi: 10.11686/cyxb2023300
ZHANG C L, LIU C Z, LYU Y H, LI B Y, ZHANG L, DING L, DU G H, ZHANG X N, ZHENG C F, ZHANG J S, LI M, CAO W D. Effects of Chinese milk vetch combined with reduced chemical fertilizer on soil phosphorus adsorption and desorption characteristics in different years. Acta Prataculturae Sinica, 2024, 33(7): 41-52. (in Chinese)
[15]
ZHANG Y H, HUANG S M, GUO D D, ZHANG S Q, SONG X, YUE K, ZHANG K K, BAO D J. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization. Journal of Soils and Sediments, 2019, 19(3): 1306-1318.
[16]
LI C Y, HE M Z, XIN C M, QIN H J, ZHANG Z H. Phosphorus desorption regulates phosphorus fraction dynamics in soil aggregates of revegetated ecosystems. Journal of Environmental Management, 2024, 361: 121238.
[17]
CASSON J P, RODNEY BENNETT D, NOLAN S C, OLSON B M, ONTKEAN G R. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta. Journal of Environmental Quality, 2006, 35(6): 2212-2221.

pmid: 17071891
[18]
李祖荫, 吕家珑. 碳酸钙与物理粘粒固磷特性的研究. 土壤, 1995, 27(6): 304-310.
LI Z Y, J L. Study on phosphorus fixation characteristics of calcium carbonate and physical clay. Soils, 1995, 27(6): 304-310. (in Chinese)
[19]
TUNESI S, POGGI V, GESSA C. Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals. Nutrient Cycling in Agroecosystems, 1999, 53(3): 219-227.
[20]
徐孟泽, 王磊, 卢艳丽, 白由路, 王玉红, 陈杨, 聂彩娥, 宋桂霈. 砂质潮土长期施磷的农学效应及有效性演变. 植物营养与肥料学报, 2022, 28(2): 205-215.
XU M Z, WANG L, LU Y L, BAI Y L, WANG Y H, CHEN Y, NIE C E, SONG G P. Agronomic effect and variation of P availability under long-term phosphorus application in sandy fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 205-215. (in Chinese)
[21]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[22]
ZHENG X M, WU J F, YAN X, QIN G B, ZHOU R W, WEI Z Q. Biochar-induced soil phosphate sorption and availability depend on soil properties: A microcosm study. Journal of Soils and Sediments, 2020, 20(11): 3846-3856.
[23]
YANG X Y, CHEN X W, YANG X T. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 2019, 187: 85-91.
[24]
YAN X, WANG D J, ZHANG H L, ZHANG G, WEI Z Q. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems & Environment, 2013, 175: 47-53.
[25]
高超, 张桃林. 面向环境的土壤磷素测定与表征方法研究进展. 农业环境保护, 2000, 19(5): 282-285.
GAO C, ZHANG T L. Review on environment oriented soil phosphorus testing procedures and interpreting methods. Agro- Environmental Protection, 2000, 19(5): 282-285. (in Chinese)
[26]
HIRADATE S, UCHIDA N. Effects of soil organic matter on pH-dependent phosphate sorption by soils. Soil Science and Plant Nutrition, 2004, 50(5): 665-675.
[27]
夏瑶, 娄运生, 杨超光, 梁永超. 几种水稻土对磷的吸附与解吸特性研究. 中国农业科学, 2002, 35(11): 1369-1374.
XIA Y, LOU Y S, YANG C G, LIANG Y C. Characteristics of phosphate adsorption and desorption in paddy soils. Scientia Agricultura Sinica, 2002, 35(11): 1369-1374. (in Chinese)
[28]
张迪, 魏自民, 李淑芹, 王世平, 许景钢. 生物有机肥对土壤中磷的吸附和解吸特性的影响. 东北农业大学学报, 2005, 36(5): 571-575.
ZHANG D, WEI Z M, LI S Q, WANG S P, XU J G. Effect of bio-organic fertilizers on phosphorus adsorption-desorption. Journal of Northeast Agricultural University, 2005, 36(5): 571-575. (in Chinese)
[29]
ESLAMIAN F, QI Z M, QIAN C. Lime amendments to enhance soil phosphorus adsorption capacity and to reduce phosphate desorption. Water, Air, & Soil Pollution, 2021, 232(2): 66.
[30]
AHMED W, HUANG J, LIU K L, ALI S, HAN T F, SUN G, CHEN J, QASWAR M, DU J X, MAHMOOD S, AKBAR MAITLO A, HAIDER KHAN Z, ZHANG H M, CHEN D Y. Impacts of long-term inorganic and organic fertilization on phosphorus adsorption and desorption characteristics in red paddies in Southern China. PLoS ONE, 2021, 16(1): e0246428.
[31]
何振立, 朱祖祥, 袁可能, 黄昌勇. 土壤对磷的吸持特性及其与土壤供磷指标之间的关系. 土壤学报, 1988, 25(4): 397-404.
HE Z L, ZHU Z X, YUAN K N, HUANG C Y. Potential phosphate sorptivity value from Langmuir equation and its application for phosphate fertilizer recommendation. Acta Pedologica Sinica, 1988, 25(4): 397-404. (in Chinese)
[32]
郭晓冬, 张雪琴, 杨玲. 甘肃省主要农业区土壤对磷的吸附与解吸特性. 西北农业学报, 1997, 6(2): 7-12.
GUO X D, ZHANG X Q, YANG L. Phosphorus sorption and desorption properties of agricultural soils in Gansu Province. Acta Agriculturae Boreali-occidentalis Sinica, 1997, 6(2): 7-12. (in Chinese)
[33]
ZHOU L, SU L Z, ZHANG L Y, ZHANG L, ZHENG Y, TANG L. Effect of different types of phosphate fertilizer on phosphorus absorption and desorption in acidic red soil of southwest China. Sustainability, 2022, 14(16): 9973.
[34]
夏汉平, 高子勤. 磷酸盐在土壤中的竞争吸附与解吸机制. 应用生态学报, 1993, 4(1): 89-93.
XIA H P, GAO Z Q. Mechanisms of competitive adsorption and desorption of phosphate in soil. Chinese Journal of Applied Ecology, 1993, 4(1): 89-93. (in Chinese)
[35]
WANG L Q, LIANG T. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils. Chemosphere, 2014, 103: 148-155.

doi: 10.1016/j.chemosphere.2013.11.050 pmid: 24342358
[36]
MAC NALLY R. Multiple regression and inference in ecology and conservation biology: Further comments on identifying important predictor variables. Biodiversity and Conservation, 2002, 11(8): 1397-1401.
[37]
WALSH C J, PAPAS P J, CROWTHER D, SIM P T, YOO J. Stormwater drainage pipes as a threat to a stream-dwelling amphipod of conservation significance, Austrogammarus australis, in southeastern Australia. Biodiversity & Conservation, 2004, 13(4): 781-793.
[38]
GRÖMPING U. Variable importance in regression models. WIREs Computational Statistics, 2015, 7(2): 137-152.
[39]
MCCAIG M L, KIDD K A, SMENDEROVAC E E, PERROTTA B G, EMILSON C E, STASTNY M, VENIER L, EMILSON E J S. Response of stream habitat and microbiomes to spruce budworm defoliation: New considerations for outbreak management. Ecological Applications, 2024, 34(7): e3020.
[40]
LAI J S, ZOU Y, ZHANG J L, PERES-NETO P R. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 2022, 13(4): 782-788.
[41]
钱多, 范昊明, 周丽丽, 武敏, 郭萍. 冻融作用对棕壤磷素吸附-解吸特性的影响. 水土保持学报, 2012, 26(2): 279-283.
QIAN D, FAN H M, ZHOU L L, WU M, GUO P. Effects of freeze- thaw cycles on phosphorus adsorption and desorption characteristic in brown earth. Journal of Soil and Water Conservation, 2012, 26(2): 279-283. (in Chinese)
[42]
王斌, 刘骅, 李耀辉, 马兴旺, 王西和, 马义兵. 长期施肥条件下灰漠土磷的吸附与解吸特征. 土壤学报, 2013, 50(4): 726-733.
WANG B, LIU H, LI Y H, MA X W, WANG X H, MA Y B. Phosphorus adsorption and desorption characteristics of gray desert soil under long-term fertilization. Acta Pedologica Sinica, 2013, 50(4): 726-733. (in Chinese)
[43]
夏文建, 梁国庆, 周卫, 汪洪, 王秀斌, 孙静文. 长期施肥条件下石灰性潮土磷的吸附解吸特征. 植物营养与肥料学报, 2008, 14(3): 431-438.
XIA W J, LIANG G Q, ZHOU W, WANG H, WANG X B, SUN J W. Adsorption and desorption characteristics of soil phosphorus in calcareous fluvo-aquic soil under long-term fertilization. Plant Nutrition and Fertilizer Science, 2008, 14(3): 431-438. (in Chinese)
[44]
杨娇, 信秀丽, 钟新月, 丁世杰, 张先凤, 任国翠, 朱安宁. 长期不同施肥对潮土磷素吸附特征的影响. 土壤学报, 2023, 60(4): 1047-1057.
YANG J, XIN X L, ZHONG X Y, DING S J, ZHANG X F, REN G C, ZHU A N. Effects of long-term fertilization on phosphorus adsorption characteristics of fluvo-aquic soils. Acta Pedologica Sinica, 2023, 60(4): 1047-1057. (in Chinese)
[45]
SUI Y B, THOMPSON M L. Phosphorus sorption, desorption, and buffering capacity in a biosolids-amended mollisol. Soil Science Society of America Journal, 2000, 64(1): 164-169.
[46]
张海涛, 刘建玲, 廖文华, 张作新, 郝小雨. 磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响. 植物营养与肥料学报, 2008, 14(2): 284-290.
ZHANG H T, LIU J L, LIAO W H, ZHANG Z X, HAO X Y. Effect of phosphate fertilizer and manure on properties of phosphorus sorption and desorption in soils with different phosphorus levels. Plant Nutrition and Fertilizer Science, 2008, 14(2): 284-290. (in Chinese)
[47]
VILLAPANDO R R, GRAETZ D A. Phosphorus sorption and desorption properties of the spodic horizon from selected Florida spodosols. Soil Science Society of America Journal, 2001, 65(2): 331-339.
[48]
王新民, 侯彦林. 有机物料对石灰性土壤磷素形态转化及吸附特性的影响研究. 环境科学学报, 2004, 24(3): 440-443.
WANG X M, HOU Y L. Effects of organic matter addition on the characteristics of phosphate adsorption and forms of phosphorus in a calcareous soil. Acta Scientiae Circumstantiae, 2004, 24(3): 440-443. (in Chinese)
[49]
DALY K, JEFFREY D, TUNNEY H. The effect of soil type on phosphorus sorption capacity and desorption dynamics in Irish grassland soils. Soil Use and Management, 2001, 17(1): 12-20.
[50]
REN C, LI Y F, ZHOU Q, LI W. Phosphate uptake by calcite: Constraints of concentration and pH on the formation of calcium phosphate precipitates. Chemical Geology, 2021, 579: 120365.
[51]
ZHAO W T, GU C H, ZHU M Q, YAN Y P, LIU Z, FENG X H, WANG X M. Chemical speciation of phosphorus in farmland soils and soil aggregates around mining areas. Geoderma, 2023, 433: 116465.
[52]
JIA C H, FAN Y K, CHI J L, PUTNIS C V, HUANG C Q, ZHANG W J. Molecular mechanisms of phosphorus immobilization by nano-clay mediated by dissolved organic matter. Chemical Geology, 2023, 641: 121786.
[53]
CHEN Y L, HUANG L, ZHANG R, MA J, GUO Z Y, ZHAO J Y, WENG L P, LI Y T. Retardation factors in controlling the transport of inorganic, organic, and particulate phosphorus in fluvo-aquic soil. Ecotoxicology and Environmental Safety, 2023, 249: 114402.
[54]
唐雪霞, 杨浩, 盛建东, 岳继生, 陈波浪. 不同施磷处理下棉田土壤磷素吸持特征研究. 中国土壤与肥料, 2021(2): 8-16.
TANG X X, YANG H, SHENG J D, YUE J S, CHEN B L. Study on the characteristics of phosphorus sorption in cotton field under different phosphorus application treatments. Soil and Fertilizer Sciences in China, 2021(2): 8-16. (in Chinese)
[55]
SAMADI A. Phosphorus sorption characteristics in relation to soil properties in some calcareous soils of western Azarbaijan province. Journal of Agricultural Science and Technology, 2006, 8: 251-264.
[56]
夏鑫, 乔航, 孙琪, 刘坤平, 陈香碧, 何寻阳, 胡亚军, 苏以荣. 有机物料投入对喀斯特地区土壤磷素赋存形态与含phoD基因细菌群落的影响. 环境科学, 2022, 43(9): 4636-4646.
XIA X, QIAO H, SUN Q, LIU K P, CHEN X B, HE X Y, HU Y, SU Y R. Effects of organic materials on phosphorus fractions and phoD- harboring bacterial community in karst soil. Environmental Science, 2022, 43(9): 4636-4646. (in Chinese)
[57]
龚玲婷, 石林, 蔡如梦. 矿物质调理剂对土壤养分含量及植物营养吸收的影响. 土壤, 2019, 51(5): 916-922.
GONG L T, SHI L, CAI R M. Effects of mineral conditioner on soil nutrient contents and nutrient absorption by lettuce. Soils, 2019, 51(5): 916-922. (in Chinese)
[58]
MANIMEL WADU M C W, MICHAELIS V K, KROEKER S, AKINREMI O O. Exchangeable calcium/magnesium ratio affects phosphorus behavior in calcareous soils. Soil Science Society of America Journal, 2013, 77(6): 2004-2013.
[59]
周建. 氮肥施用和模拟酸沉降对土壤酸化作用的影响研究[D]. 杭州: 浙江大学, 2013.
ZHOU J. Effects of nitrogen fertilizer application and simulated acid deposition on soil acidification[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[60]
杨昌富, 王好圆, 覃双结, 张璐, 文石林, 蔡泽江. 氮肥形态及用量对坡耕地红壤pH的影响机理. 植物营养与肥料学报, 2023, 29(6): 1168-1180.
YANG C F, WANG H Y, QIN S J, ZHANG L, WEN S L, CAI Z J. Mechanisms of nitrogen fertilizer types and rates on pH of red soil in sloping farmland. Journal of Plant Nutrition and Fertilizers, 2023, 29(6): 1168-1180. (in Chinese)
[61]
焦亚鹏, 齐鹏, 王晓娇, 武均, 姚一铭, 蔡立群, 张仁陟. 施氮量对农田土壤有机氮组分及酶活性的影响. 中国农业科学, 2020, 53(12): 2423-2434. doi: 10.3864/j.issn.0578-1752.2020.12.010.
JIAO Y P, QI P, WANG X J, WU J, YAO Y M, CAI L Q, ZHANG R Z. Effects of different nitrogen application rates on soil organic nitrogen components and enzyme activities in farmland. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434. doi: 10.3864/j.issn.0578-1752.2020.12.010. (in Chinese)
[1] BAI YuXin, LIU LingZhi, AN TingTing, LI ShuangYi, WANG JingKuan. Eeffects of Long-Term Fertilization on Bacterial Community Structure and Carbon Metabolic Functions in Brown Soil [J]. Scientia Agricultura Sinica, 2025, 58(8): 1579-1590.
[2] YUAN HuiLin, LI YaYing, GU WenJie, XU PeiZhi, LU YuSheng, SUN LiLi, ZHOU ChangMin, LI WanLing, QIU RongLiang. Characterization and Correlation Analysis of Soil Dissolved Organic Matter and Microbial Communities Under Long-Term Application of Fresh and Composted Manure [J]. Scientia Agricultura Sinica, 2025, 58(2): 307-325.
[3] LU Peng, FENG Jia, LI Li, YANG Li, YANG Lei, LÜ DeZhi, XUE YanFei. Phosphorus Fractions in Rhizosphere and Bulk Soil of Wheat and Their Availability Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2025, 58(12): 2382-2396.
[4] HU DanDan, SONG HuiJie, DUAN YingHua, WU Yan, HU ZhiHhua, XU XiaoLin, ZHANG WenJu, HE XiaoLin, LIU KaiLou, SU Peng, HUANG QunZhao. Effects of Long-Term Fertilization on Nitrogen Surplus and Deficit and Soil Alkali-Hydrolyzed Nitrogen in Red Soil Double-Cropping Rice System [J]. Scientia Agricultura Sinica, 2024, 57(24): 4907-4918.
[5] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[6] LI TianJiao, ZHANG NaiYu, SHEN WenYan, SONG TianHao, LIU HongFang, LIU XiaoYan, ZHANG XiuZhi, PENG Chang, YANG JinFeng, ZHANG ShuXiang. Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3835-3847.
[7] YANG WenHui, LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System [J]. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403.
[8] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[9] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[10] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[11] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[12] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[13] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[14] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[15] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!