Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1994-2007.doi: 10.3864/j.issn.0578-1752.2025.10.011

• HORTICULTURE • Previous Articles     Next Articles

Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions

CAO XiongJun1(), WANG Bo2, HAN JiaYu1, LIAO YongFeng3, XIE ShuYu1, BAI Yang3, HUANG XiaoYun3, LU Li3, HUANG QiuMi1, JIANG ChunFen1, PAN FengPing1, BAI XianJin1()   

  1. 1 Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
    2 College of Agriculture, Guangxi University, Nanning 530004
    3 Guangxi Zhencheng Agriculture Co., Ltd., Nanning 530007
  • Received:2024-12-20 Accepted:2025-01-21 Online:2025-05-16 Published:2025-05-21
  • Contact: BAI XianJin

Abstract:

【Objective】 Grapes (Vitis vinifera) hold significant economic importance in hot climate regions. However, high temperatures pose severe challenges to their photosynthetic efficiency, as well as to fruit yield and quality. At the same time, these extreme conditions provide unique natural selection pressures conducive to breeding grape varieties with both high photosynthetic efficiency and heat tolerance. This study aimed to elucidate the impact of high temperatures in hot regions on grape photosynthetic efficiency, assess the feasibility of breeding for high photosynthetic efficiency under such conditions, and employ photosynthetic parameters for the early selection of hybrid progenies exhibiting high efficiency, heat tolerance, and superior fruit quality. The findings are intended to offer scientific foundations and practical support for high-efficiency grape breeding in hot climates. 【Method】 A total of 187 germplasm resources, including Shine Muscat, and 683 progenies from five hybrid crosses were used as experimental materials. We measured the net photosynthetic rate (Pn), stomatal conductance (Gs), heat tolerance indicators (Fv/Fm, PIabs, ETo/CSm and WK), and soluble solid content (Brix) of the fruits. These data were analyzed to determine the distribution characteristics of photosynthetic efficiency and to evaluate the heat tolerance of the hybrid progenies. Based on these evaluations, we identified elite lines with both high photosynthetic efficiency and heat tolerance. 【Result】 High temperatures significantly inhibited grape photosynthetic efficiency, with the net photosynthetic rate decreasing by up to 30.28% at 40 ℃. However, compared to the first crops of summer fruit leaves formed in a milder environment, the second crops of winter fruit leaves, developed under high-temperature conditions, exhibited higher photosynthetic efficiency and stability, indicating that high-temperature climates in hot regions provide a unique environment for uncovering high-efficiency potential. The net photosynthetic rate and other photosynthetic efficiency indicators in the hybrid progeny population followed a normal distribution, suggesting that photosynthetic efficiency in grapes can be enhanced through generational selection in high-efficiency breeding. Five excellent hybrid lines with high photosynthetic efficiency were selected, among which the line 21A-7-297 had a net photosynthetic rate of 24.88 µmol·m-2·s-1, 26.42% higher than the parent Shine Muscat and a fruit Brix of 22.03, 15.34% higher. Heat tolerance analysis showed that 21A-7-297 and 21A-7-145 maintained maximum photochemical efficiency (Fv/Fm) values of 0.61 and 0.62 under 47 ℃ heat stress, significantly higher than the parent Ruiduhongyu (0.44), demonstrating better heat adaptation. 【Conclusion】 This study revealed the impact of high temperatures in hot regions on grape photosynthetic efficiency and used photosynthetic and heat tolerance parameters for early screening. Hybrid lines with high photosynthetic efficiency, heat tolerance, and good fruit quality were rapidly obtained from the hybrid progeny populations, demonstrating the feasibility and effectiveness of high-efficiency breeding for grapes in hot regions. Future work can further optimize high-efficiency breeding strategies based on an in-depth understanding of the underlying mechanisms of high photosynthetic efficiency.

Key words: grapes in hot climate region, high-temperature stress, photosynthetic efficiency, high photosynthetic efficiency breeding, heat tolerance

Table 1

Hybrid combinations and the corresponding number of offspring"

序号
No.
亲本组合
Parent combination
杂交后代数量(株)
Number of hybrid offspring (plants)
杂交后代编号
Hybrid offspring code
1 阳光玫瑰×瑞都红玉 Shine Muscat×Ruiduhongyu 158 21A-7-n
2 阳光玫瑰×克瑞森 Shine Muscat×Crimson seedless 268 21A-3-n
3 阳光玫瑰×玉波2号 Shine Muscat×Yubo2 81 21A-5-n
4 阳光玫瑰×优系T Shine Muscat× Elite plant T 109 21A-1-n
5 瑞都红玉×克瑞森 Ruiduhongyu×Crimson seedless 67 21A-87-n

Fig. 1

Changes in the average temperature and light intensity during the grape growth and development period in Nanning, Guangxi (2021-2023) The upper limit of the color background represents the average maximum value, and the lower limit represents the average minimum value"

Fig. 2

Effect of different temperatures on grape net photosynthetic rate"

Table 2

Effect of temperature on net photosynthetic rate of grapes in the summer and winter fruit"

品种 Variety 生产季节 Growing season Pnmax (µmol·m-2·s-1) Topt (℃) TPn₉₀ (℃) Δ35 ℃ (%) Δ40 ℃ (%)
阳光玫瑰
Shine Muscat
夏果 Summer fruit 19.24±1.21b 26.11±0.48c 16.06-36.24 7.50±0.83b 18.84±0.78b
冬果 Winter fruit 26.20±0.95a 27.81±0.51b 20.58-37.54 5.90±0.53c 14.84±1.68b
巨峰
Kyoho
夏果 Summer fruit 12.94±2.25c 27.97±0.68b 20.38-35.10 9.68±0.47a 30.28±4.11a
冬果 Winter fruit 19.85±1.86b 29.78±1.15a 19.94-37.76 3.99±1.26d 17.53±2.20b

Fig. 3

Distribution characteristics of Fv/Fm in 187 grape germplasm resources under 47 ℃ for 40 minutes treatment"

Fig. 4

Distribution characteristics of net photosynthetic rate (Pn) and stomatal conductance (Gs) in hybrid offspring Hybrid combination1: Shine Muscat × Ruiduhongyu; Hybrid combination2: Shine Muscat × Crimson seedless; Hybrid combination3: Shine Muscat × Yubo; Hybrid combination4: Shine Muscat × Elite plant T; Hybrid combination5: Ruiduhongyu × Crimson seedless. Green short vertical lines represent female parent average values. Red short vertical lines represent male parent average values"

Fig. 5

Photos of fruits from the parental lines and five elite hybrid offspring cultivars 1: Shine Muscat (♀); 2: Ruiduhongyu (♂); 3: 21A-7-1; 4: 21A-7-115; 5: 21A-7-145; 6: 21A-7-292; 7: 21A-7-297"

Fig. 6

Photosynthetic parameters of the parental lines and five elite hybrid offspring cultivars The different lowercase letters indicate significant differences in the photosynthetic parameters at the P<0.05 level. The same as below"

Fig. 7

Soluble solids content (SSC) of fruits from the parental lines and five elite hybrid offspring cultivars"

Fig. 8

Chlorophyll fluorescence parameters of the parental lines and five elite hybrid offspring cultivars under 47 ℃, 40 min treatment a: Maximum quantum efficiency, Fv/Fm≤0.3 is considered heat-sensitive, Fv/Fm between 0.3-0.5 is considered moderately heat-tolerant, and Fv/Fm>0.5 is considered heat-tolerant; b: Photosynthetic performance index; c: Electron transport rate per unit cross-sectional area; d: Parameter reflecting the degree of damage to the donor side oxygen-evolving complex"

[1]
戴声佩, 李海亮, 刘海清, 刘恩平. 中国热区划分研究综述. 广东农业科学, 2012, 39(23): 205-208, 237.
DAI S P, LI H L, LIU H Q, LIU E P. Review on the regionalization of tropical zone in China. Guangdong Agricultural Sciences, 2012, 39(23): 205-208, 237. (in Chinese)
[2]
王博, 郭荣荣, 成果, 韩佳宇, 林玲, 何建军, 白扬, 谢蜀豫, 王举兵, 白先进. 热区葡萄育种研究进展. 南方农业学报, 2024, 55(8): 2374-2385.
WANG B, GUO R R, CHENG G, HAN J Y, LIN L, HE J J, BAI Y, XIE S Y, WANG J B, BAI X J. Grape breeding in tropical and subtropical regions: A review. Journal of Southern Agriculture, 2024, 55(8): 2374-2385. (in Chinese)
[3]
白先进, 王举兵. 广西葡萄一年两收栽培关键技术. 广西农学报, 2009, 24(5): 69.
BAI X J, WANG J B. Key technologies for double-cropping cultivation of grapes in Guangxi. Journal of Guangxi Agriculture, 2009, 24(5): 69. (in Chinese)
[4]
CROCE R, CARMO-SILVA E, CHO Y B, ERMAKOVA M, HARBINSON J, LAWSON T, MCCORMICK A J, NIYOGI K K, ORT D R, PATEL-TUPPER D, PESARESI P, RAINES C, WEBER A P M, ZHU X G. Perspectives on improving photosynthesis to increase crop yield. The Plant Cell, 2024, 36(10): 3944-3973.

doi: 10.1093/plcell/koae132 pmid: 38701340
[5]
NAZARI M, KORDROSTAMI M, GHASEMI-SOLOKLUI A A, EATON-RYE J J, PASHKOVSKIY P, KUZNETSOV V, ALLAKHVERDIEV S I. Enhancing photosynthesis and plant productivity through genetic modification. Cells, 2024, 13(16): 1319.
[6]
SINCLAIR G, GALARNEAU E R, HNIZDOR J F, MCELRONE A J, WALKER M A, BARTLETT M K. Grape cultivars adapted to hotter, drier growing regions exhibit greater photosynthesis in hot conditions despite less drought-resistant leaves. Annals of Botany, 2024, 134(2): 205-218.
[7]
KHAN N, CHOI S H, LEE C H, QU M N, JEON J S. Photosynthesis: genetic strategies adopted to gain higher efficiency. International Journal of Molecular Sciences, 2024, 25(16): 8933.
[8]
SMITH E N, VAN AALST M, TOSENS T, NIINEMETS Ü, STICH B, MOROSINOTTO T, ALBORESI A, ERB T J, GÓMEZ-CORONADO P A, TOLLETER D, et al. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. Molecular Plant, 2023, 16(10): 1547-1563.

doi: 10.1016/j.molp.2023.08.017 pmid: 37660255
[9]
LONG S P, ZHU X G, NAIDU S L, ORT D R. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 2006, 29(3): 315-330.
[10]
ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010, 61: 235-261.
[11]
SIMKIN A J, LÓPEZ-CALCAGNO P E, RAINES C A. Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 2019, 70(4): 1119-1140.

doi: 10.1093/jxb/ery445 pmid: 30772919
[12]
PAUL M J. Improving photosynthetic metabolism for crop yields: What is going to work? Frontiers in Plant Science, 2021, 12: 743862.
[13]
MUHIE S H. Optimization of photosynthesis for sustainable crop production. CABI Agriculture and Bioscience, 2022, 3: 50.
[14]
GARCIA A, GAJU O, BOWERMAN A F, BUCK S A, EVANS J R, FURBANK R T, GILLIHAM M, MILLAR A H, POGSON B J, REYNOLDS M P, RUAN Y L, TAYLOR N L, TYERMAN S D, ATKIN O K. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. New Phytologist, 2023, 237(1): 60-77.
[15]
MATTHEWS M L, BURGESS S J. How much could improving photosynthesis increase crop yields? A call for systems-level perspectives to guide engineering strategies. Current Opinion in Biotechnology, 2024, 88: 103144.
[16]
程建峰, 沈允钢. 作物高光效之管见. 作物学报, 2010, 36(8): 1235-1247.
CHENG J F, SHEN Y G. My humble opinions on high photosynthetic efficiency of crop. Acta Agronomica Sinica, 2010, 36(8): 1235-1247. (in Chinese)
[17]
ÉVA C, OSZVALD M, TAMÁS L. Current and possible approaches for improving photosynthetic efficiency. Plant Science, 2019, 280: 433-440.

doi: S0168-9452(18)30680-0 pmid: 30824023
[18]
PERERA-CASTRO A V, FLEXAS J. Recent advances in understanding and improving photosynthesis. Faculty Reviews, 2020, 9: 5.
[19]
林荣呈, 杨文强, 王柏臣, 于龙江, 王文达, 田利金, 迟伟, 卢庆陶, 韩广业, 匡廷云. 光合作用研究若干前沿进展与展望. 中国科学(生命科学), 2021, 51(10): 1376-1384.
LIN R C, YANG W Q, WANG B C, YU L J, WANG W D, TIAN L J, CHI W, LU Q T, HAN G Y, KUANG T Y. Advances and perspectives in several areas of photosynthesis research. Scientia Sinica (Vitae), 2021, 51(10): 1376-1384. (in Chinese)
[20]
余渝, 陈冠文, 孔宪辉, 王旭文, 赵福相, 刘文豪. 关于开展棉花高光效育种的思考//中国农学会棉花分会2021年年会论文汇编. 沈阳: 中国农学会棉花分会, 2021.
YU Y, CHEN G W, KONG X H, WANG X W, ZHAO F X, LIU W H. Thoughts on carrying out cotton high light efficiency breeding// Proceedings of the 2021 Annual Meeting of the China Society of Cotton Sci-Tech. Shenyang: China Society of Cotton Sci-Tech Press, 2021. (in Chinese)
[21]
李霞, 周文彬, 钱前. 作物高光效育种研究进展和展望. 中国基础科学, 2022, 24(5): 1-6, 14.
LI X, ZHOU W B, QIAN Q. Progress and prospect of crop breeding for high photosynthetic efficiency. China Basic Science, 2022, 24(5): 1-6, 14. (in Chinese)
[22]
张智胜, 朱国辉, 彭新湘. 优化碳同化实现作物高光效研究进展. 华南农业大学学报, 2022, 43(6): 69-77.
ZHANG Z S, ZHU G H, PENG X X. Advances in improvement of crop photosynthetic efficiency by optimizing the photosynthetic carbon assimilation. Journal of South China Agricultural University, 2022, 43(6): 69-77. (in Chinese)
[23]
LI R Q, HE Y, CHEN J Y, ZHENG S Y, ZHUANG C X. Research progress in improving photosynthetic efficiency. International Journal of Molecular Sciences, 2023, 24(11): 9286.
[24]
杨文强, 林荣呈, 端木德强, 李磊, 卢从明, 欧阳敏, 王文达, 孙韬, 田利金, 王柏臣, 朱新广. 近10年光合作用领域若干重要研究进展. 植物生理学报, 2024, 60(2): 211-247.
YANG W Q, LIN R C, DUANMU D Q, LI L, LU C M, OUYANG M, WANG W D, SUN T, TIAN L J, WANG B C, ZHU X G. Multiple of important progress on photosynthesis in the last 10 years. Plant Physiology Journal, 2024, 60(2): 211-247. (in Chinese)
[25]
ECKARDT N A, ALLAHVERDIYEVA Y, ALVAREZ C E, BÜCHEL C, BURLACOT A, CARDONA T, CHALONER E, ENGEL B D, GROSSMAN A R, HARRIS D, et al. Lighting the way: Compelling open questions in photosynthesis research. The Plant Cell, 2024, 36(10): 3914-3943.
[26]
WANG Y. Improving photosynthetic efficiency in fluctuating light to enhance yield of C3 and C4 crops. Crop and Environment, 2024, 3(4): 184-193.
[27]
MATTHEWS M L. Engineering photosynthesis, nature’s carbon capture machine. PLoS Biology, 2023, 21(7): e3002183.
[28]
BAILEY-SERRES J, PARKER J E, AINSWORTH E A, OLDROYD G E D, SCHROEDER J I. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109-118.
[29]
NAZ M, RAZA M A, TARIQ M, QI S S, DAI Z C, DU D L. Enhancing photosynthetic efficiency of crop through metabolic engineering. Metabolic Engineering in Plants. Singapore: Springer Nature Singapore, 2022: 61-89.
[30]
LEISTER D. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. Molecular Plant, 2023, 16(1): 4-22.
[31]
DIXIT S, KUMAR A, SRINIVASAN K, DURAI RAJ VINCENT P M, KRISHNAN N R. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1335901.
[32]
ZHANG D L, XU F, WANG F H, LE L, PU L. Synthetic biology and artificial intelligence in crop improvement. Plant Communications, 2024: 101220.
[33]
路龙祥, 冀占东, 刘志坚, 庄勇, 魏明, 李辉, 黄维藻, 汪德锋, 杜安平, 涂升斌. 高光效水稻鉴定筛选方法. 应用与环境生物学报, 2022, 28(2): 358-372.
LU L X, JI Z D, LIU Z J, ZHUANG Y, WEI M, LI H, HUANG W Z, WANG D F, DU A P, TU S B. A method for screening and identification of rice varieties with high effective photosynthesis. Chinese Journal of Applied and Environmental Biology, 2022, 28(2): 358-372. (in Chinese)
[34]
CARDONA T, SHAO S X, NIXON P J. Enhancing photosynthesis in plants: the light reactions. Essays in Biochemistry, 2018, 62(1): 85-94.

doi: 10.1042/EBC20170015 pmid: 29563222
[35]
许大全, 陈根云. 改善光合作用的光捕获. 生命科学, 2024, 36(9): 1160-1167.
XU D Q, CHEN G Y. Improving light-harvesting for photosynthesis. Chinese Bulletin of Life Sciences, 2024, 36(9): 1160-1167. (in Chinese)
[36]
朱国辉, 张智胜, 彭新湘. 光呼吸演化、调控与遗传改良. 生命科学, 2024, 36(10): 1226-1239.
ZHU G H, ZHANG Z S, PENG X X. Photorespiration evolution, regulation, and genetic improvement. Chinese Bulletin of Life Sciences, 2024, 36(10): 1226-1239. (in Chinese)
[37]
SHEN B R, WANG L M, LIN X L, YAO Z, XU H W, ZHU C H, TENG H Y, CUI L L, LIU E E, ZHANG J J, HE Z H, PENG X X. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Molecular Plant, 2019, 12(2): 199-214.
[38]
刘扶桑, 宋青峰, 于桂朝, 毛林雄. 光合作用系统模型与作物高光效改良. 生命科学, 2024, 36(9): 1123-1140.
LIU F S, SONG Q F, YU G C, MAO L X. Photosynthetic system model and improvement of crop high photosynthetic efficiency. Chinese Bulletin of Life Sciences, 2024, 36(9): 1123-1140. (in Chinese)
[39]
XIONG D L. Perspectives of improving rice photosynthesis for higher grain yield. Crop and Environment, 2024, 3(3): 123-137.
[40]
齐羚羽, 李豪杰, 欧行奇, 王文定, 朱启迪, 郑梦瑶, 李新华, 郑会芳. 基于主成分分析的高光效小麦品种筛选. 安徽农业科学, 2022, 50(11): 18-21, 26.
QI L Y, LI H J, OU X Q, WANG W D, ZHU Q D, ZHENG M Y, LI X H, ZHENG H F. Selection of high photosynthetic-efficiency wheat varieties based on principal component analysis. Journal of Anhui Agricultural Sciences, 2022, 50(11): 18-21, 26. (in Chinese)
[41]
YAN Y Y, HOU P, DUAN F Y, NIU L, DAI T B, WANG K R, ZHAO M, LI S K, ZHOU W B. Improving photosynthesis to increase grain yield potential: An analysis of maize hybrids released in different years in China. Photosynthesis Research, 2021, 150(1/2/3): 295-311.
[42]
张小红. 高光效、耐弱光甘薯研究进展. 中国农学通报, 2023, 39(8): 1-6.

doi: 10.11924/j.issn.1000-6850.casb2022-0264
ZHANG X H. Research progress of sweet potato with high light efficiency and weak light tolerance. Chinese Agricultural Science Bulletin, 2023, 39(8): 1-6. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0264
[43]
沈升法, 项超, 孟羽莎, 李兵, 吴列洪. 高光效甘薯品种浙薯86的选育、产量与品质特征. 浙江农业学报, 2024, 36(7): 1469-1480.

doi: 10.3969/j.issn.1004-1524.20231059
SHEN S F, XIANG C, MENG Y S, LI B, WU L H. Breeding, yield and quality characteristics of Zheshu 86, a sweetpotato variety with high photosynthetic efficiency. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1469-1480. (in Chinese)

doi: 10.3969/j.issn.1004-1524.20231059
[44]
张耀文, 赵小光, 关周博, 侯君利, 王学芳, 董育红, 田建华, 李殿荣, 王竹云. 作物高光效种质筛选的研究进展. 中国农学通报, 2019, 35(18): 1-11.

doi: 10.11924/j.issn.1000-6850.casb18020069
ZHANG Y W, ZHAO X G, GUAN Z B, HOU J L, WANG X F, DONG Y H, TIAN J H, LI D R, WANG Z Y. High photosynthetic- efficiency germplasm screening of crop: research progress. Chinese Agricultural Science Bulletin, 2019, 35(18): 1-11. (in Chinese)
[45]
朱新广, 熊燕, 阮梅花, 刘晓, 徐健, 钟超. 光合作用合成生物学研究现状及未来发展策略. 中国科学院院刊, 2018, 33(11): 1239-1248.
ZHU X G, XIONG Y, RUAN M H, LIU X, XU J, ZHONG C. Research status and future development strategies of synthetic biology in photosynthesis. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1239-1248. (in Chinese)
[46]
曹雄军, 韩佳宇, 谢蜀豫, 黄秋秘, 邓海燕, 盘丰平, 王博, 江春分, 时晓芳, 白先进. 葡萄叶绿素荧光参数测量方法的优化与日变化特征分析. 南方农业学报, 2024, 55(8): 2248-2261.
CAO X J, HAN J Y, XIE S Y, HUANG Q M, DENG H Y, PAN F P, WANG B, JIANG C F, SHI X F, BAI X J. Optimization of measurement methods for chlorophyll fluorescence parameters and analysis of diurnal variation characteristics in grape leaves. Journal of Southern Agriculture, 2024, 55(8): 2248-2261. (in Chinese)
[47]
姜建福, 马寅峰, 樊秀彩, 张颖, 孙海生, 王利军, 刘崇怀. 196份葡萄属(Vitis L.)种质资源耐热性评价. 植物遗传资源学报, 2017, 18(1): 70-79.

doi: 10.13430/j.cnki.jpgr.2017.01.009
JIANG J F, MA Y F, FAN X C, ZHANG Y, SUN H S, WANG L J, LIU C H. Evaluation of 196 Vitis L. germplasm resources to heat tolerance. Journal of Plant Genetic Resources, 2017, 18(1): 70-79. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2017.01.009
[48]
XU H G, LIU G J, LIU G T, YAN B F, DUAN W, WANG L J, LI S H. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biology, 2014, 14: 156.

doi: 10.1186/1471-2229-14-156 pmid: 24898786
[49]
郭娅, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘鹏. 高温干旱复合胁迫抑制夏玉米光系统Ⅱ性能降低籽粒产量. 中国农业科学, 2024, 57(21): 4205-4220. doi: 10.3864/j.issn.0578-1752.2024.21.004.
GUO Y, REN H, WANG H Z, ZHANG J W, ZHAO B, REN B Z, LIU P. High temperature and drought combined stress inhibited photosystem Ⅱ performance and decreased grain yield of summer maize. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220. doi: 10.3864/j.issn.0578-1752.2024.21.004. (in Chinese)
[50]
REN J S, JI X Y, WANG C H, HU J J, NERVO G, LI J H. Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P. nigra. Forests, 2020, 11(12): 1319.
[51]
ZHAO M, LAFITTE H R, SACKS E, DIMAYUGA G, ACUÑA T L B. Perennial O. sativa × O. rufipogon interspecific hybrids: I. Photosynthetic characteristics and their inheritance. Field Crops Research, 2008, 106(3): 203-213.
[52]
MA K F, SONG Y P, JIANG X B, ZHANG Z Y, LI B L, ZHANG D Q. Photosynthetic response to genome methylation affects the growth of Chinese white poplar. Tree Genetics & Genomes, 2012, 8(6): 1407-1421.
[53]
LI E X, YIN F Y, LI C, KAN D Y, YOU J H, XIAO S Q, CHENG Z Q, KE X. Screening of highly efficient photosynthetic hybrids of Oryza officinalis and analysis of their photosynthetic pathway genes. Photosynthetica, 2021, 59(2): 303-312.
[54]
ZHANG Z X, XIN H L, JIAO T Q, ZHANG Z H, HE P, YANG Z H, ZHU J B, LIU R N. How photosynthetic performance impacts agricultural productivity in hybrid cotton offspring. Heliyon, 2024, 10(14): e34603.
[55]
FERNÁNDEZ-CALLEJA M, MONTEAGUDO A, CASAS A M, BOUTIN C, PIN P A, MORALES F, IGARTUA E. Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid-parent barley germplasm set. Sensors, 2020, 20(5): 1486.
[56]
朱新广, 常天根, 宋青峰, 常硕其, 王重荣, 张国庆, 郭亚, 周少川. 数字植物: 科学内涵、瓶颈及发展策略. 合成生物学, 2020, 1(3): 285-297.

doi: 10.12211/2096-8280.2020-018
ZHU X G, CHANG T G, SONG Q F, CHANG S Q, WANG C R, ZHANG G Q, GUO Y, ZHOU S C. ePlant: Scientific connotations, bottlenecks, and development strategies. Synthetic Biology Journal, 2020, 1(3): 285-297. (in Chinese)

doi: 10.12211/2096-8280.2020-018
[57]
刘凤之. 我国葡萄产业现状与高质量发展方向. 农业知识, 2023(10): 10-14.
LIU F Z. Present situation and high-quality development direction of grape industry in China. Agriculture Knowledge, 2023(10): 10-14. (in Chinese)
[1] WANG MengYuan, WEI QianRui, LI HaiYan, YANG QiaoMin, YU Jun, HUANG Wei, LU MingHui. Functional Analysis of MADS-box Transcription Factor Gene CaAGL61 in Heat Tolerance of Pepper [J]. Scientia Agricultura Sinica, 2025, 58(8): 1604-1616.
[2] DU SiQi, WEN YuLun, NING LiXing, YIN XiaoYu, WANG ShuFen, SONG HaiYan, WANG ZhaoHai, LI WeiXing, LIAO JiangLin. Effects on Pollen Release Related Traits of the Differential Genotypes Indica by High-Temperature Stress at Anthesis [J]. Scientia Agricultura Sinica, 2025, 58(10): 1867-1877.
[3] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[4] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[5] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[6] SHI DaKun, YAO TianLong, LIU NanNan, DENG Min, DUAN HaiYang, WANG LuLin, WAN Jiong, GAO JiongHao, XIE HuiLing, TANG JiHua, ZHANG XueHai. Genome-Wide Association Study of Chlorophyll Content in Maize [J]. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857.
[7] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[8] LI JiaJia, ZHENG ShuangYu, SUN GenLou, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress [J]. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682.
[9] RU Zhen-gang, FENG Su-wei, LI Gan. High-Yield Potential and Effective Ways of Wheat in Yellow & Huai River Valley Facultative Winter Wheat Region [J]. Scientia Agricultura Sinica, 2015, 48(17): 3388-3393.
[10] AN Fei-Fei-1, FAN Jie-1, LI Geng-Hu-2, JIAN Chun-Ping-2, LI Kai-Mian-1. Comparison of Leaves Proteome and Chlorophyll Fluorescence of Cassava cv. SC8 and Its Tetraploid Mutants [J]. Scientia Agricultura Sinica, 2013, 46(19): 3978-3987.
[11] LI Shi-Ping, CHANG Xiao-Ping, WANG Cheng-She, JING Rui-Lian. Mapping QTL for Heat Tolerance at Grain Filling Stage in Common Wheat [J]. Scientia Agricultura Sinica, 2013, 46(10): 2119-2129.
[12] LIU Xue-ning,YANG Li-ping,MA Chuan,XIANG Di-ying. Effect of Hot Water Treatment of Bulbs on Heat Tolerance of Lily Young Plants#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1314-1320 .
[13] PENG Jian-zong,LI An,HUANG Zhi-gang,CHEN Zhao-ping,WEN Fang-de,WANG Xiao-jing
.

Screening for Heat-Tolerant Variants and Field Identification of Gerbera hybrida

[J]. Scientia Agricultura Sinica, 2010, 43(2): 380-387 .
[14]

. Influence of High Temperature Stress on Composition and Accumulation Configuration of Storage Protein in Rice
[J]. Scientia Agricultura Sinica, 2009, 42(2): 714-718 .
[15] . The regulatory mechanism of different nitrogen form on photosynthetic efficiency of rice plants under water stress [J]. Scientia Agricultura Sinica, 2007, 40(10): 2162-2168 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!