Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1867-1877.doi: 10.3864/j.issn.0578-1752.2025.10.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Effects on Pollen Release Related Traits of the Differential Genotypes Indica by High-Temperature Stress at Anthesis

DU SiQi(), WEN YuLun(), NING LiXing, YIN XiaoYu, WANG ShuFen, SONG HaiYan, WANG ZhaoHai, LI WeiXing, LIAO JiangLin()   

  1. Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045
  • Received:2024-11-18 Accepted:2024-12-30 Online:2025-05-16 Published:2025-05-21
  • Contact: LIAO JiangLin

Abstract:

【Objective】 To elucidate the causes of high-temperature stress inducing rice floret infertility, the present study analyzed the effects of high-temperature stresses on pollen release related traits including pollen grain swelling, anther dehiscence, pollen grain residue in anther and pollen grain deposition on the stigma of the differential genotypes Indica at anthesis. 【Method】Indica germplasms were sown in batches and cultivated in the Nanchang region, Jiangxi Province, China. The rice plants flowering at natural high-temperature environments on early August with 36.5-37.8 ℃ canopy temperature was used as treatments, and the rice plants flowering at suitable environments on middle September with 30.8-32.5 ℃ canopy temperature were used as controls. The pollen release related traits, such as pollen grain swelling, anther dehiscence, pollen grain residue in anther and pollen grain deposition on the stigma from treatments and controls, were detected and analyzed. 【Result】 After flowering under high-temperature stress, the rice germplasms Jiangxijiansimiao, Yuexiangzhan and Huangguangyouzhan show high-temperature tolerant at anthesis, and the floret fertility rates are 91.6%, 89.2% and 87.9%, respectively; while the germplasms Zhenfu, Yuzhenxiang, IR64 and Miyang46 show high-temperature sensitive at anthesis, and the floret fertility rates are just 55.2%, 60.3%, 61.1% and 73.2%, which are very significantly or significantly lower than that of its corresponding controls. Under high-temperature environments, the pollen grain swelling rates for the high-temperature sensitive germplasms Zhenfu, Yuzhenxiang, IR64 and Miyang46 are just 1.99%, 1.16%, 1.12% and 2.70%, which are very significant smaller than that of its corresponding controls; while the pollen grain swelling rates of the other germplasms show no significant difference between treatment and its corresponding control. Under high-temperature environments, the rates of anther dehiscence length in total anther length for the high-temperature sensitive germplasms Zhenfu, Yuzhenxiang, IR64 and Miyang46 are respective 66.0%, 45.4%, 48.7% and 63.6%, which are very significantly or significantly shorter than that of the corresponding controls, and the pollen grain residue are obvious more than that of the corresponding controls; while the anther dehiscence length rates and the pollen grain residue from the other germplasms show no significant difference between treatments and controls. After flowering under high-temperature environments, the average pollen grain number deposited on one stigma of the sensitive germplasms were about 20, which were significant less than that of the controls; while the average pollen grain number deposited on one stigma of the other rice germplasms show no significant difference between treatments and controls. 【Conclusion】 The high-temperature stresses inhibit the pollen grain swelling, effect the anther normal dehiscence, increase the pollen viscidity to impede the pollen grain releasing from anther and decrease the pollen grain number scattering on the stigma, inducing rice floret infertility and decreasing the seed set.

Key words: rice, anthesis, high-temperature stress, flowering, pollination

Fig. 1

Canopy air temperatures of rice flowering under high-temperature and suitable environments C-AV: Average canopy temperature of control rice flowering from September 12 to 19; T-AV: Average canopy temperature of treatment rice flowering from August 4 to 10"

Table 1

The pollination related traits of rice flowering under high-temperature and suitable environments"

水稻种质名称
Germplasm name
开花时间段的
冠层处平均气温
Average canopy temperature
(℃)
平均可育颖花率
Average spikelet
fertility rate (%)
花粉粒吸胀膨大率
Pollen grain swelling rate (%)
花药裂口长度相对花药总长度的百分比
Percentage of the anther dehiscence to anther length (%)
柱头捕获花粉粒数量
Pollen grain number on stigma
T C T C T C T C T C
江西吉安丝苗
JiangxiJi’ansimiao
37.3 32.7 91.6±2.1 92.4±1.7 13.25±0.13 11.39±0.11 84.3±1.7 85.5±1.9 34.4±0.5 39.8±0.7
粤香占
Yuexiangzhan
37.3 32.7 89.2±1.2 93.8±2.0 7.31±0.06 9.78±0.08 82.8±1.5 87.2±1.8 35.4±0.9 65.4±1.3
黄广油占
Huangguangyouzhan
37.2 32.4 87.9±1.3 91.3±1.8 6.75±0.03 6.81±0.04 85.1±1.7 84.0±1.7 33.6±0.7 35.4±0.9
华占
Huazhan
37.2 32.4 86.9±1.1 91.8±1.8 6.35±0.02 5.70±0.04 78.2±1.4 81.8±1.5 31.6±0.5 32.6±0.7
浓香39
Nongxiang39
37.1 32.3 86.3±1.3 91.8±2.0 7.88±0.05 6.97±0.06 79.1±1.3 78.6±1.4 31.8±0.4 52.2±1.3
华丝占
Huasizhan
37.1 32.3 85.9±1.4 87.8±0.9 8.53±0.07 9.34±0.08 79.4±1.3 79.6±1.5 39.6±0.7 56.4±1.2
七银占
Qiyinzhan
37.1 32.3 85.2±1.2 88.3±1.1 6.27±0.04 7.84±0.05 78.6±1.2 77.2±1.4 35.8±0.9 46.4±1.3
广新占
Guangxinzhan
37.1 32.3 82.9±1.0 92.1±1.7 7.15±0.04 10.17±0.12 77.8±1.3 76.1±1.1 33.2±0.6 37.0±0.9
黄籼占
Huangxianzhan
37.3 32.7 82.9±0.8 94.6±1.9 6.30±0.03 6.71±0.05 82.2±1.4 84.2±1.6 35.0±0.9 41.0±1.3
美香占2号
Meixiangzhan2
37.2 32.4 82.8±0.9 88.6±1.6 7.16±0.03 5.65±0.03 83.0±1.1 83.3±1.6 38.6±0.9 36.0±0.6
19香
19xiang
36.9 32.2 81.5±0.9 83.1±1.2 8.75±0.05 7.08±0.06 81.2±1.3 84.3±1.7 32.6±0.5 58.0±1.6
密阳46
Miyang46
37.1 32.3 73.2±1.0* 87.6±1.3 2.70±0.03** 8.74±0.06 63.6±1.0* 80.5±1.5 20.6±0.3** 51.2±1.7
IR64
International rice 64
36.9 32.2 61.1±0.9** 89.4±1.5 1.12±0.02** 10.83±0.11 48.7±0.7** 85.1±1.6 20.0±0.3** 54.2±1.3
玉针香
Yuzhenxiang
37.1 32.3 60.3±0.9** 80.4±1.2 1.16±0.02** 7.72±0.04 45.4±0.8** 82.8±1.5 20.0±0.3** 36.8±0.7
珍富
Zhenfu
36.9 32.2 55.2±0.7** 82.5±1.1 1.99±0.03** 12.80±0.11 66.0±0.9* 85.2±1.6 21.2±0.4** 51.4±1.7

Fig. 2

The anther photographs of rice after flowering under suitable and high-temperature environments The anther photographs are equal ratio reduction according to the actual sizes; all the scale bars are 500 μm"

Fig. 3

The pollen grain number on stigma of rice flowering under suitable environment and high-temperature stress The stigma photographs are equal ratio reduction, and all of the scale bars are 200 μm"

[1]
MURALI G, IWAMURA T, SHAI M R, ROLL U. Future temperature extremes threaten land vertebrates. Nature, 2023, 615(7952): 461-467.
[2]
WANG X H, ZHAO C, MÜLLER C, WANG C Z, CIAIS P, JANSSENS I, PEÑUELAS J, ASSENG S, LI T, ELLIOTT J, HUANG Y, LI L, PIAO S L. Emergent constraint on crop yield response to warmer temperature from field experiments. Nature Sustainability, 2020, 3: 908-916.
[3]
张卫建, 陈长青, 江瑜, 张俊, 钱浩宇. 气候变暖对我国水稻生产的综合影响及其应对策略. 农业环境科学学报, 2020, 39(4): 805-811.
ZHANG W J, CHEN C Q, JIANG Y, ZHANG J, QIAN H Y. Comprehensive influence of climate warming on rice production and countermeasure for food security in China. Journal of Agro- Environment Science, 2020, 39(4): 805-811. (in Chinese)
[4]
刘力, 阮荣平. 气候变暖对粮食安全的影响综述. 江苏农业科学, 2016, 44(11): 6-10.
LIU L, RUAN R P. A review on the impact of climate warming on food security. Jiangsu Agricultural Sciences, 2016, 44(11): 6-10. (in Chinese)
[5]
陈劲, 唐文帮. 水稻耐极端高温育种研究进展. 杂交水稻, 2024, 39(3): 1-11.
CHEN J, TANG W B. Research progress of rice breeding for extreme heat tolerance. Hybrid Rice, 2024, 39(3): 1-11. (in Chinese)
[6]
郭建茂, 白玛仁增, 梁卫敏, 申双和, 江晓东. 两湖地区水稻抽穗开花期高温热害时空分布. 中国农业气象, 2019, 40(1): 51-61.
GUO J M, PEMA R Z, LIANG W M, SHEN S H, JIANG X D. Temporal and spatial distribution of heat damage during heading and flowering stage of rice in Hubei and Hunan Province. Chinese Journal of Agrometeorology, 2019, 40(1): 51-61. (in Chinese)
[7]
陈东东, 栗晓玮, 张璐阳, 罗孳孳, 张建平, 陈翛. 西南地区水稻高温热害时空特征及危险性. 中国农业气象, 2024, 45(8): 860-871.
CHEN D D, LI X W, ZHANG L Y, LUO Z Z, ZHANG J P, CHEN X. Spatial-temporal characteristics and risks of high-temperature heat damage of rice in southwest China. Chinese Journal of Agrometeorology, 2024, 45(8): 860-871. (in Chinese)

doi: 10.3969/j.issn.1000-6362.2024.08.005
[8]
LOHANI N, SINGH M B, BHALLA P L. High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 2020, 71(2): 555-568.

doi: 10.1093/jxb/erz426 pmid: 31560053
[9]
LIU M Y, ZHOU Y H, SUN J X, MAO F, YAO Q, LI B L, WANG Y Y, GAO Y B, DONG X, LIAO S H, WANG P, HUANG S B. From the floret to the canopy: High temperature tolerance during flowering. Plant Communications, 2023, 4(6): 100629.
[10]
徐鹏, 贺一哲, 黄亚茹, 王辉, 尤翠翠, 何海兵, 柯健, 武立权. 花期短时高温对不同品种水稻颖花开放动态及产量的影响. 中国农业气象, 2023, 44(1): 25-35.
XU P, HE Y Z, HUANG Y R, WANG H, YOU C C, HE H B, KE J, WU L Q. Effects of short-term high temperature on spikelet opening dynamics and yield of different rice varieties during flowering period. Chinese Journal of Agrometeorology, 2023, 44(1): 25-35. (in Chinese)
[11]
YAO Q, LI P, WANG X, LIAO S H, WANG P, HUANG S B. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. Plant Communications, 2024, 5(9): 101009.
[12]
JAGADISH S V K, CRAUFURD P Q, WHEELER T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(7): 1627-1635.
[13]
许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展. 中国水稻科学, 2024, 38(2): 111-126.

doi: 10.16819/j.1001-7216.2024.230601
XU Y Q, JIANG N, FENG B H, XIAO J J, TAO L X, FU G F. Research progress in mechanism behind heat damage and its regulatory techniques during flowering in rice. Chinese Journal of Rice Science, 2024, 38(2): 111-126. (in Chinese)

doi: 10.16819/j.1001-7216.2024.230601
[14]
ZHANG Z B, HU M H, XU W W, WANG Y, HUANG K, ZHANG C, WEN J. Understanding the molecular mechanism of anther development under abiotic stresses. Plant Molecular Biology, 2021, 105(1/2): 1-10.
[15]
MATSUI T, HASEGAWA T. Effect of long anther dehiscence on seed set at high temperatures during flowering in rice (Oryza sativa L.). Scientific Reports, 2019, 9(1): 20363.
[16]
WILSON Z A, SONG J, TAYLOR B, YANG C Y. The final split: The regulation of anther dehiscence. Journal of Experimental Botany, 2011, 62(5): 1633-1649.

doi: 10.1093/jxb/err014 pmid: 21325605
[17]
MATSUI T, OMASA K, HORIE T. Mechanism of anther dehiscence in rice (Oryza sativa L.). Annals of Botany, 1999, 84(4): 501-506.
[18]
HU Q Q, WANG W C, LU Q F, HUANG J L, PENG S B, CUI K H. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 2021, 21(1): 428.
[19]
MATSUI T, OMASA K, HORIE T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Production Science, 2000, 3(4): 430-434.
[20]
徐鹏, 贺一哲, 尤翠翠, 黄亚茹, 何海兵, 柯健, 武立权. 高温胁迫导致水稻颖花败育的机理及其防御措施研究进展. 江苏农业学报, 2023, 39(1): 255-265.
XU P, HE Y Z, YOU C C, HUANG Y R, HE H B, KE J, WU L Q. Research progress on the mechanism and defense measures of rice spikelet abortion caused by high temperature stress. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 255-265. (in Chinese)
[21]
KHAN A H, MIN L, MA Y Z, ZEESHAN M, JIN S X, ZHANG X L. High-temperature stress in crops: Male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal, 2023, 21(4): 680-697.
[22]
GIORNO F, WOLTERS-ARTS M, MARIANI C, RIEU I. Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2013, 2(3): 489-506.
[23]
SHRESTHA S, MAHAT J, SHRESTHA J, MADHAV K C, PAUDEL K. Influence of high-temperature stress on rice growth and development. A review. Heliyon, 2022, 8(12): e12651.
[24]
CHO L H, YOON J, AN G. The control of flowering time by environmental factors. The Plant Journal, 2017, 90(4): 708-719.
[25]
VICENTINI G, BIANCUCCI M, MINERI L, CHIRIVÌ D, GIAUME F, MIAO Y L, KYOZUKA J, BRAMBILLA V, BETTI C, FORNARA F. Environmental control of rice flowering time. Plant Communications, 2023, 4(5): 100610.
[26]
RANG Z W, JAGADISH S V K, ZHOU Q M, CRAUFURD P Q, HEUER S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 2011, 70(1): 58-65.
[27]
DENG F, ZENG Y L, LI Q P, HE C Y, LI B, ZHU Y Y, ZHOU X, YANG F, ZHONG X Y, WANG L, CHEN H, ZHOU W, REN W J. Decreased anther dehiscence contributes to a lower fertilization rate of rice subjected to shading stress. Field Crops Research, 2021, 273: 108291.
[28]
陈建珍, 闫浩亮, 刘科, 穆麒麟, 朱开典, 张运波, 田小海. 大穗型水稻品种抽穗开花期遭遇高温后的结实表现. 中国农业气象, 2018, 39(2): 84-91.
CHEN J Z, YAN H L, LIU K, MU Q L, ZHU K D, ZHANG Y B, TIAN X H. Seed-set of large-panicle rice cultivars suffered from high temperature at anthesis. Chinese Journal of Agrometeorology, 2018, 39(2): 84-91. (in Chinese)
[29]
刘业涛, 刘科, 王毅, 高园, 田小海. 高温条件下水稻耐感品种冠层微气象特征差异. 中国稻米, 2019, 25(3): 75-79.

doi: 10.3969/j.issn.1006-8082.2019.03.016
LIU Y T, LIU K, WANG Y, GAO Y, TIAN X H. Variation of coronal micrometeorological characteristics of rice resistant varieties under high temperature conditions. China Rice, 2019, 25(3): 75-79. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2019.03.016
[30]
方文英, 陈佳麒, 楚岱蔚, 丁梦佳, 姚平, 金益民, 罗天子, 沈兴连, 莫红华, 黄玉英, 郑孝孝, 朱德峰. 抽穗开花期高温对杂交稻结实率和产量影响研究. 浙江农业科学, 2025, 66(1): 30-34.

doi: 10.16178/j.issn.0528-9017.20231024
FANG W Y, CHEN J Q, CHU D Y, DING M J, YAO P, JIN Y M, LUO T Z, SHEN X L, MO H H, HUANG Y Y, ZHENG X X, ZHU D F. Effects of high temperature during the period of heading and flowering on setting rate and yield of hybrid rice. Journal of Zhejiang Agricultural Sciences, 2025, 66(1): 30-34. (in Chinese)

doi: 10.16178/j.issn.0528-9017.20231024
[31]
李克阳, 张伟, 台德卫, 石英尧, 张德文. 水稻耐热性鉴定技术体系的研究. 杂交水稻, 2024, 39(2): 23-28.
LI K Y, ZHANG W, TAI D W, SHI Y Y, ZHANG D W. Studies on the technical system of heat resistance identification of rice. Hybrid Rice, 2024, 39(2): 23-28. (in Chinese)
[32]
胡玉婷, 郝蓉蓉, 党程成, 周梦, 刘洋旋, 刘越, 杨青青, 陈龙周, 严鹏, 田小海. 江汉平原优质粳稻灌浆前期高温胁迫下的田间微气象特征. 江西农业大学学报, 2023, 45(6): 1347-1357.
HU Y T, HAO R R, DANG C C, ZHOU M, LIU Y X, LIU Y, YANG Q Q, CHEN L Z, YAN P, TIAN X H. Field micrometeorological characteristics of high-quality Japonica rice in Jianghan Plain under high temperature stress in pre-grazing period. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(6): 1347-1357. (in Chinese)
[33]
高园, 沈升, 刘科, 杨璐, 魏中伟, 马国辉, 田小海. 杂交水稻新品种在自然高温下的耐热性评价. 杂交水稻, 2019, 34(6): 68-74.
GAO Y, SHEN S, LIU K, YANG L, WEI Z W, MA G H, TIAN X H. Evaluation of heat tolerance of new hybrid rice varieties under natural high temperature conditions. Hybrid Rice, 2019, 34(6): 68-74. (in Chinese)
[34]
季平, 柳浩, 叶世河, 刘金龙, 匡佳丽, 龙莎, 杨洪涛, 刘晓龙. 不同生殖生长阶段高温胁迫对水稻产量和品质的影响. 核农学报, 2023, 37(9): 1872-1883.

doi: 10.11869/j.issn.1000-8551.2023.09.1872
JI P, LIU H, YE S H, LIU J L, KUANG J L, LONG S, YANG H T, LIU X L. Effect of heat stress at different reproductive growth stages on yield and grain quality in rice. Journal of Nuclear Agricultural Sciences, 2023, 37(9): 1872-1883. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.09.1872
[35]
林聃, 江敏, 苗波, 郭萌, 石春林. 水稻高温热害模型研究及其在福建省的应用. 中国水稻科学, 2023, 37(3): 307-320.

doi: 10.16819/j.1001-7216.2023.220604
LIN D, JIANG M, MIAO B, GUO M, SHI C L. Research on simulation model of high temperature stress on rice and its application in Fujian Province. Chinese Journal of Rice Science, 2023, 37(3): 307-320. (in Chinese)

doi: 10.16819/j.1001-7216.2023.220604
[36]
宋有金, 吴超. 高温影响水稻颖花育性的生理机制综述. 江苏农业科学, 2020, 48(16): 41-48.
SONG Y J, WU C. Physiological mechanism of high temperature affecting fertility of rice spikelets: A review. Jiangsu Agricultural Sciences, 2020, 48(16): 41-48. (in Chinese)
[37]
胡声博. 水稻高温诱导颖花不育品种间差异及其机理研究[D]. 北京: 中国农业科学院, 2013.
HU S B. Study on differences of varieties and its mechanism in rice spikelet sterility induced by high temperature[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[38]
张桂莲, 陈立云, 张顺堂, 刘国华, 唐文邦, 李梅华, 雷东阳, 陈信波. 高温胁迫对水稻花粉粒性状及花药显微结构的影响. 生态学报, 2008, 28(3): 1089-1097.
ZHANG G L, CHEN L Y, ZHANG S T, LIU G H, TANG W B, LI M H, LEI D Y, CHEN X B. Effects of high temperature stress on pollen characters and anther microstructure of rice. Acta Ecologica Sinica, 2008, 28(3): 1089-1097. (in Chinese)
[39]
张祖建, 王晴晴, 郎有忠, 王春哥, 朱庆森, 杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响. 作物学报, 2014, 40(2): 273-282.
ZHANG Z J, WANG Q Q, LANG Y Z, WANG C G, ZHU Q S, YANG J C. Effects of high temperature stress at heading stage on pollination and fertilization of different types of rice variety. Acta Agronomica Sinica, 2014, 40(2): 273-282. (in Chinese)
[40]
KOBAYASHI K, MATSUI T, MURATA Y, YAMAMOTO M. Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivars at high temperatures. Plant Production Science, 2011, 14(2): 89-95.
[41]
DAS S, KRISHNAN P, NAYAK M, RAMAKRISHNAN B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 2014, 101: 36-46.
[1] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[2] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[5] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[6] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[7] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[8] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[9] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[10] ZHENG YaQin, LIU XueQing, WU SiWen, TANG XiaoYan, YANG DanNi, WANG YongKang, AHMAD Aftab, KHAN Afrsyab, WANG ChengGang, CHEN GuoHu. Cloning and Expression of BcDET2 Gene and Functional of Its Regulatory Effect on Bolting and Flowering in Wucai (Brassica campestris L.) [J]. Scientia Agricultura Sinica, 2025, 58(5): 991-1003.
[11] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[12] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[13] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[14] SHI ShunYu, YANG Tao, PANG Bo, LI Jing, LIN YiFeng, WANG ZhengRui, FU LinCheng, ABUDUBEK Zalgamali, GAO WenWei, WU PengHao. Genome-Wide Association Analysis and Prediction of Candidate Genes for Chlorophyll Content in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(10): 1878-1895.
[15] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!