Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1878-1895.doi: 10.3864/j.issn.0578-1752.2025.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis and Prediction of Candidate Genes for Chlorophyll Content in Gossypium barbadense

SHI ShunYu(), YANG Tao, PANG Bo, LI Jing, LIN YiFeng, WANG ZhengRui, FU LinCheng, ABUDUBEK Zalgamali, GAO WenWei(), WU PengHao()   

  1. College of Agronomy, Xinjiang Agricultural University/Cotton Engineering Research Center, Ministry of Education, Urumqi 830052
  • Received:2024-11-11 Accepted:2024-12-20 Online:2025-05-16 Published:2025-05-21
  • Contact: GAO WenWei, WU PengHao

Abstract:

【Objective】 Chlorophyll, as the core pigment of plant photosynthesis, directly affects the photosynthetic efficiency and yield of plants. By mining molecular markers and candidate genes related to chlorophyll in Sea-island cotton, we can provide a theoretical basis for the improvement of Sea-island cotton varieties. 【Method】 Using 203 sea-island cotton varieties as research objects, the chlorophyll content of sea-island cotton in three stages (budding stage, flowering stage, and boll stage) was measured in 4 environments (2 points in 2 years), and the chlorophyll content of sea-island cotton in 4 environments was measured. Correlation analysis was performed on the chlorophyll content, and the whole-genome resequencing data and the BLUP value of the chlorophyll content were used for genome-wide correlation analysis to screen candidate genes related to chlorophyll content. 【Result】 Descriptive statistics of chlorophyll content in the four environments showed that the chlorophyll content at bud stage, flowering stage and bell stage were normally distributed across years and locations, indicating that the trait is a quantitative trait controlled by multiple genes. Chlorophyll content varied significantly across growth periods and was significantly affected by environment, with correlation coefficients of 0.021-0.287 for chlorophyll content at bud stage, 0.017-0.180 at flowering stage and -0.118-0.212 at bell stage. GWAS research results screened out a total of 52 significant SNPs sites. Among them, 20, 20 and 12 significant SNP sites were screened in the bud stage, flowering stage and boll stage respectively, mainly distributed on chromosomes such as A05, A06, D05, D06 and D10. By annotating significant sites, a total of 80 candidate genes were annotated, including GB_A05G0103, GB_A05G0104, GB_A05G0105, GB_A05G0106, GB_A05G0107, GB_A05G0108, GB_A05G0109, GB_A05G0110, GB_A05G0111 and GB_A 05G0112 and other 10 genes are in type I (4 environments) The flowering stage and the flowering stage of type Ⅱ (two environments in northern Xinjiang) are all annotated. GB_A06G1512 and GB_A06G1513 are annotated in the flowering stage and boll stage of typeⅠand the flowering stage of typeⅡ. GB_D09G0836, GB_D09G0837 and GB_D09G0838 are annotated in the florescence and boll stage of typeⅠand typeⅡ. The flowering stages are all annotated. Nine genes related to chlorophyll content were identified through relative expression analysis. Among them, genes such as GB_A05G0097, GB_A05G0093 and GB_D05G0109 play important roles in chlorophyll metabolism, photosynthesis and plant stress resistance. 【Conclusion】 There are significant differences in the chlorophyll content of sea-island cotton at different growth stages, and are significantly affected by the environment. A total of 52 loci related to the chlorophyll content of sea-island cotton were detected, and nine genes were found to be candidate genes for chlorophyll in sea-island cotton.

Key words: Gossypium barbadense, chlorophyll, genome-wide association analysis, bud stage, flowering stage, boll stage

Table 1

Primers for chlorophyll content related candidate genes"

基因Gene 引物序列Primer sequence (5′-3′)
GB_A05G0097 F: CCATCATTGCGTTCCCTCA
R: CCACTTCAATGCGTTGCTCTT
GB_A05G0093 F: AGGAGATTGGATGGATTTATGG
R: CGAAGCACTTGGTTCAGACGA
GB_A05G0094 F: CTCCAAAGGGACCTAAGCG
R: TTGTCATCTTCGGCTGCTTC
GB_D05G0108 F: AGGCGGAGACTTCAAGAGCA
R: GAAAGCAAACCACCACAACAG
GB_D05G0111 F: TTCATCTGCGATAGTGCCAAGT
R: CGTGAGCCTGACCACCATAA
GB_D09G0241 F: ATTCTTTTATCGGCACTGGG
R: TTCGCACATGCACTTCCTC
GB_D11G2706 F: AGGAACTGGCGCTGTTGAG
R: CACTGCATGATTGTTGCTGGA
GB_A05G0104 F: CTATCAAGCCAATGGTCGTCA
R: CAAGGTAGCCAAAGAAATCACG
GB_A05G2753 F: GGTTGATAGAAGGGAGGCTGAG
R: TGTTGATTGCTGGCGGTGT
GB_A06G1512 F: TGCCAACATCAGTCGAAGAA
R: CCAAACTCGCCTCCAAATAC
GB_D09G0837 F: GCACTCAGTCCTCTGCTTTCTC
R: TGCCACCAACCATGATTTCT

Table 2

Descriptive statistics of chlorophyll content in four environments"

时期
Stage
地点
Environment
年份
Year
最小值
Min
最大值
Max
均值±标准差
Mean±SD
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
蕾期
BU
南疆
South Xinjiang
2023 26.97 55.57 38.62±3.93 0.111 -0.117 10.18
2024 25.97 56.66 43.13±4.94 -0.076 -0.309 11.46
北疆
North Xinjiang
2023 32.70 69.83 50.06±5.07 -0.077 0.092 10.14
2024 24.27 53.60 40.28±4.11 0.049 -0.029 10.20
花期
FL
南疆
South Xinjiang
2023 31.56 56.33 44.23±3.28 0.212 0.44 7.42
2024 30.25 62.12 48.44±3.88 -0.327 0.561 8.01
北疆
North Xinjiang
2023 32.47 73.13 51.29±5.06 -0.073 0.459 9.86
2024 36.23 65.20 53.03±4.43 -0.265 0.203 8.35
铃期
BO
南疆
South Xinjiang
2023 35.68 58.87 46.73±2.89 0.076 0.335 6.19
2024 32.92 66.47 52.25±4.15 -0.544 0.832 7.93
北疆
North Xinjiang
2023 30.80 88.43 52.45±5.61 -0.017 0.99 10.69
2024 40.20 65.13 54.99±3.79 -0.137 -0.168 6.90

Fig. 1

Change curves of mean chlorophyll values of four environments in three consecutive stages 23-NJ: Southern Xinjiang in 2023; 24-NJ: Southern Xinjiang in 2024; 23-BJ: Northern Xinjiang in 2023; 24-BJ: Northern Xinjiang in 2024. The same as below"

Fig. 2

Correlation analysis of chlorophyll content at three stages in four environments The Pearson correlation coefficient is shown in the upper right corner of each square, indicating the strength of the correlation between different variables. ***: P<0.001, **: P<0.01, *: P<0.05; the lower triangle part is a scatter plot, the upper triangle part is a histogram and density map, the rightmost column is a box plot, and the bottom row is a histogram"

Fig. 3

Density map of SNPs in the Sea Island cotton population"

Fig. 4

Frequency of distribution of three types of BLUP values A-C are the bud stage, flowering stage and boll stage of type Ⅰ (four environments in two years at two sites in Xinjiang); D-F are the bud stage, flowering stage and boll stage of type Ⅱ (two environments in northern Xinjiang); G-I are the bud stage, flowering stage and boll stage of type Ⅲ (two environments in southern Xinjiang)"

Table 3

GWAS analysis of SNP loci significant"

时期 Stage 染色体 Chr. 位点 SNP 位置 Position (bp) 域值 Log10(P) 贡献率 R2 (%)
typeⅠ-蕾期
type I-BU
D06 D06__45046684 45046684 5.23E-07 11.71
D06 D06__45046727 45046727 7.35E-07 11.48
A06 A06__97133658 97133658 1.11E-06 11.13
D06 D06__45046692 45046692 1.18E-06 11.07
A06 A06__97133639 97133639 1.48E-06 10.88
A06 A06__75682296 75682296 1.53E-06 11.00
A05 A05__1015344 1015344 1.88E-06 10.68
D06 D06__45048679 45048679 2.33E-06 10.45
A06 A06__77381986 77381986 3.19E-06 10.18
A06 A06__77425996 77425996 5.30E-06 9.79
D12 D12__30721282 30721282 5.37E-06 9.82
D12 D12__30721261 30721261 5.59E-06 9.83
A06 A06__77244172 77244172 6.70E-06 9.63
A06 A06__77234476 77234476 7.13E-06 9.53
D05 D05__1148688 1148688 9.08E-06 9.28
D03 D03__20289762 20289762 9.22E-06 9.27
A06 A06__79031976 79031976 1.05E-05 9.16
typeⅠ-花期
typeⅠ-FL
A01 A01__90389165 90389165 2.89E-07 12.32
A05 A05__1143105 1143105 4.33E-07 11.87
D06 D06__9609452 9609452 2.01E-06 10.62
D06 D06__9609444 9609444 2.88E-06 10.31
D06 D06__9594267 9594267 5.55E-06 9.93
D06 D06__9596411 9596411 5.65E-06 9.69
A06 A06__84839696 84839696 6.52E-06 9.70
A06 A06__84839628 84839628 6.80E-06 9.62
D06 D06__9596396 9596396 7.66E-06 9.43
D06 D06__9596403 9596403 7.66E-06 9.43
D06 D06__9609329 9609329 7.70E-06 9.51
A07 A07__40303394 40303394 8.30E-06 9.40
A07 A07__33782171 33782171 8.44E-06 9.39
D06 D06__9607739 9607739 9.09E-06 9.41
D06 D06__9609239 9609239 1.01E-05 9.19
A07 A07__33782163 33782163 1.04E-05 9.21
typeⅠ-铃期
typeⅠ-BO
D09 D09__33492473 33492473 2.30E-06 10.51
D11 D11__9159215 9159215 6.86E-06 9.61
A06 A06__84839696 84839696 8.56E-06 9.46
typeⅡ-蕾期
type II-BU
D06 D06__9609329 9609329 7.21E-06 9.57
D06 D06__9609356 9609356 7.92E-06 9.44
D06 D06__9609239 9609239 8.91E-06 9.30
typeⅡ-花期
typeⅡ-FL
A06 A06__84839628 84839628 7.19E-06 9.57
A05 A05__29811660 29811660 7.60E-06 9.65
A05 A05__1143105 1143105 8.55E-06 9.33
D09 D09__7822269 7822269 9.98E-06 9.37
typeⅡ-铃期
typeⅡ-BO
A02 A02__75978101 75978101 3.33E-07 12.26
D09 D09__1283330 1283330 2.89E-06 10.40
A02 A02__75978116 75978116 4.05E-06 10.06
D10 D10__33330685 33330685 6.28E-06 9.73
D11 D11__54219214 54219214 9.19E-06 9.49
D09 D09__33492473 33492473 1.02E-05 9.23
typeⅢ-铃期
typeⅢ-BO
A05 A05__25568668 25568668 8.35E-06 9.61
A11 A11__111767796 111767796 8.81E-06 9.70
D04 D04__33010594 33010594 1.03E-05 9.26

Fig. 5

Manhattan and QQ plots for correlation analysis based on BLUP values of four environments A: Bud stage; B: Flower stage; C: Boll stage"

Fig. 6

Manhattan and QQ plots for correlation analysis based on BLUP values of 2 environments in the northern Xinjiang A: Bud stage; B: Flower stage; C: Boll stage"

Fig. 7

Manhattan and QQ plots for correlation analysis based on BLUP values of 2 environments in southern Xinjiang A: Bud stage; B: Flower stage; C: Boll stage"

Table 4

Candidate genes annotated by GWAS analysis"

基因Gene 位置Position (bp) 功能注释Annotation
GB_A01G1746 A01:90339165-90439165 玉米野生近缘种(大刍草)颖壳结构1 Teosinte glume architecture 1
GB_A01G1747 A01:90339165-90439165 -
GB_A01G1748 A01:90339165-90439165 -
GB_A02G1377 A02:75928101-76028101 -
GB_A05G0095 A05:965344-1065344 真核翻译起始因子4G异构体1 Eukaryotic translation initiation factor isoform 4G-1
GB_A05G0096 A05:965344-1065344 基因沉默抑制蛋白3 Protein suppressor of gene silencing 3
GB_A05G0097 A05:965344-1065344 叶绿体腺苷酸核苷转运体BT1 Adenine nucleotide transporter BT1, chloroplastic
GB_A05G0098 A05:965344-1065344 未表征蛋白At2g34160 Uncharacterized protein At2g34160
GB_A05G0099 A05:965344-1065344 纤维素合成酶A催化亚基1 Cellulose synthase A catalytic subunit 1
GB_A05G0100 A05:965344-1065344 未表征RNA结合蛋白C17H9.04c Uncharacterized RNA-binding protein C17H9.04c
GB_A05G0101 A05:965344-1065344 富含亮氨酸重复序列的类受体丝氨酸LRR receptor-like serine
GB_A05G0092 A05:965344-1065344 E3泛素-蛋白连接酶CIP8 E3 ubiquitin-protein ligase CIP8
GB_A05G0093 A05:965344-1065344 纤维素合成酶A催化亚基1 Cellulose synthase A catalytic subunit 1
GB_A05G0094 A05:965344-1065344 纤维素合成酶A催化亚基7 Cellulose synthase A catalytic subunit 7
GB_A05G0103 A05:1093105-1193105 含EG45样结构域的蛋白EG45-like domain containing protein
GB_A05G0104 A05:1093105-1193105 葡聚糖内切-1,3-β-葡糖苷酶Glucan endo-1,3-beta-glucosidase
GB_A05G0105 A05:1093105-1193105 蛋白磷酸酶2C 22 Probable protein phosphatase 2C 22
GB_A05G0106 A05:1093105-1193105 吲哚-3-丙酮酸单加氧酶YUCCA4
Probable indole-3-pyruvate monooxygenase YUCCA4
GB_A05G0107 A05:1093105-1193105 TIFY 8蛋白 Protein TIFY 8
GB_A05G0108 A05:1093105-1193105 细胞周期蛋白A2-2 Cyclin-A2-2
GB_A05G0109 A05:1093105-1193105 E3泛素-蛋白连接酶At1g12760 E3 ubiquitin-protein ligase At1g12760
GB_A05G0110 A05:1093105-1193105 PHD指蛋白3 PHD finger protein 3
GB_A05G0111 A05:1093105-1193105 DnaJ同源亚家族B成员4 DnaJ homolog subfamily B member 4
GB_A05G0112 A05:1093105-1193105 -
GB_A05G2749 A05:29761660-29861660 MYB蛋白1的靶标 Target of MYB protein 1
GB_A05G2750 A05:29761660-29861660 转录延伸因子SPT5 Transcription elongation factor SPT5
GB_A05G2751 A05:29761660-29861660 -
GB_A05G2752 A05:29761660-29861660 硬脂酰-[酰基载体蛋白]9-去饱和酶6,叶绿体
Stearoyl-[acyl-carrier-protein] 9-desaturase 6, chloroplastic
GB_A05G2753 A05:29761660-29861660 UDP-葡糖醛酸:木聚糖α-葡糖醛酸转移酶1
UDP-glucuronate:xylan alpha-glucuronosyltransferase 1
GB_A06G1449 A06:77331986-77431986 未表征蛋白At2g29880 Uncharacterized protein At2g29880
GB_A06G1588 A06:97083639-97183639 鸟苷酸结合蛋白7 Guanylate-binding protein 7
GB_A06G1512 A06:84789628-84889628 SET结构域组40蛋白 Protein SET DOMAIN GROUP 40
GB_A06G1513 A06:84789628-84889628 -
GB_A07G1593 A07:33732163-33832163 贝壳杉烯酮还原酶Vestitone reductase
GB_A11G3478 A11:111717796-111817796 TMV抗性蛋白N TMV resistance protein N
GB_D04G1055 D04:32960594-33060594 丝氨酸Serine
GB_D04G1056 D04:32960594-33060594 长春碱合成酶Vinorine synthase
GB_D04G1057 D04:32960594-33060594 -
GB_D04G1058 D04:32960594-33060594 丝氨酸Serine
GB_D05G0105 D05:1098688-1198688 硼转运体4 Boron transporter 4
GB_D05G0106 D05:1098688-1198688 含EG45样结构域的蛋白EG45-like domain containing protein
GB_D05G0107 D05:1098688-1198688 葡聚糖内切-1,3-β-葡糖苷酶Glucan endo-1,3-beta-glucosidase
GB_D05G0108 D05:1098688-1198688 蛋白磷酸酶2C 22 Probable protein phosphatase 2C 22
GB_D05G0109 D05:1098688-1198688 吲哚-3-丙酮酸单加氧酶YUCCA4
Probable indole-3-pyruvate monooxygenase YUCCA4
GB_D05G0110 D05:1098688-1198688 2-氧代戊二酸依赖的双加氧酶AOP1.2
Probable 2-oxoglutarate-dependent dioxygenase AOP1.2
GB_D05G0111 D05:1098688-1198688 TIFY 8蛋白Protein TIFY 8
GB_D05G0112 D05:1098688-1198688 细胞周期蛋白A2-2 Cyclin-A2-2
GB_D05G0113 D05:1098688-1198688 E3泛素-蛋白连接酶At1g12760 E3 ubiquitin-protein ligase At1g12760
GB_D05G0114 D05:1098688-1198688 PHD指蛋白3 PHD finger protein 3
GB_D05G0115 D05:1098688-1198688 DnaJ同源亚家族B成员4 DnaJ homolog subfamily B member 4
GB_D05G0116 D05:1098688-1198688 多聚腺苷酸结合蛋白相互作用蛋白5
Polyadenylate-binding protein-interacting protein 5
GB_D06G1580 D06:44996684-45096684 含NAC结构域的蛋白73 NAC domain-containing protein 73
GB_D06G1582 D06:44996684-45096684 含EG45样结构域的蛋白EG45-like domain containing protein
GB_D09G0836 D09:33442473-33542473 线粒体含五肽重复序列的蛋白At1g61870
Pentatricopeptide repeat-containing protein At1g61870, mitochondrial
GB_D09G0837 D09:33442473-33542473 磷脂酶A I Phospholipase A I
GB_D09G0241 D09:7772269-7872269 聚半乳糖醛酸酶At3g15720 Probable polygalacturonase At3g15720
GB_D09G0242 D09:7772269-7872269 60 S核糖体输出蛋白NMD3 60S ribosomal export protein NMD3
GB_D09G0243 D09:7772269-7872269 类受体蛋白激酶At5g15080 Probable receptor-like protein kinase At5g15080
GB_D09G0244 D09:7772269-7872269 34 kDa线粒体外膜蛋白孔素Mitochondrial outer membrane protein porin of 34 kDa
GB_D09G0245 D09:7772269-7872269 果胶酸裂解酶7 Probable pectate lyase 7
GB_D09G0058 D09:1233330-1333330 -
GB_D09G0059 D09:1233330-1333330 含核糖体L1结构域的蛋白1 Ribosomal L1 domain-containing protein 1
GB_D09G0060 D09:1233330-1333330 含五肽重复序列的蛋白At4g21190
Pentatricopeptide repeat-containing protein At4g21190
GB_D09G0061 D09:1233330-1333330 氨基酸通透酶BAT1同源物Amino-acid permease BAT1 homolog
GB_D09G0838 D09:33442473-33542473 磷脂酶A 1 Phospholipase A 1
GB_D10G1608 D10:33280685-33380685 -
GB_D11G1082 D11:9109215-9209215 Rho GTPase激活蛋白3 Rho GTPase-activating protein 3
GB_D11G1083 D11:9109215-9209215 转录因子MYC4 Transcription factor MYC4
GB_D11G1084 D11:9109215-9209215 -
GB_D11G1085 D11:9109215-9209215 CBL相互作用的丝氨酸残基或蛋白CBL-interacting serine
GB_D11G1086 D11:9109215-9209215 -
GB_D11G1087 D11:9109215-9209215 异质性核核糖核蛋白Q Heterogeneous nuclear ribonucleoprotein Q
GB_D11G1088 D11:9109215-9209215 IQ结构域蛋白1 Protein IQ-DOMAIN 1
GB_D11G1089 D11:9109215-9209215 含NAC结构域的蛋白43 NAC domain-containing protein 43
GB_D11G2706 D11:54169214-54269214 囊泡相关蛋白2-2 Vesicle-associated protein 2-2
GB_D11G2707 D11:54169214-54269214 钠离子Sodium
GB_D11G2708 D11:54169214-54269214 -
GB_D11G2709 D11:54169214-54269214 E3泛素-蛋白连接酶类RING1 E3 ubiquitin-protein ligase RING1-like
GB_D12G1060 D12:30671261-30771261 质膜型ATP酶9 ATPase 9, plasma membrane-type
GB_D12G1061 D12:30671261-30771261 蛋白CAJ1 Protein CAJ1

Fig. 8

Expression analysis of candidate genes for chlorophyll content in Sea Island cotton"

[1]
郑子漂, 徐海江, 林涛, 郭仁松, 王亮, 崔建平, 张大伟, 魏鑫, 努斯热提·吾斯曼. 新疆长绒棉育成品种演变趋势及综合评价. 中国农业大学学报, 2022, 27(6): 55-70.
ZHENG Z P, XU H J, LIN T, GUO R S, WANG L, CUI J P, ZHANG D W, WEI X, NUSIRAT O. Evolution tendency and comprehensive evaluation of long-staple cotton bred varieties in Xinjiang. Journal of China Agricultural University, 2022, 27(6): 55-70. (in Chinese)
[2]
刘贞琦, 刘振业, 马达鹏, 曾淑芬. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10(1): 57-62.
LIU Z Q, LIU Z Y, MA D P, ZENG S F. A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agronomica Sinica, 1984, 10(1): 57-62. (in Chinese)
[3]
屠曾平, 林秀珍, 蔡惟涓, 余昭楹. 水稻高光效育种的再探索图版Ⅰ. 植物学报, 1995, 37(8): 641-651, 671.
TU Z P, LIN X Z, CAI W J, YU Z Y. Reprobing into rice breeding for high photosynthetic efficiency. Journal of Integrative Plant Biology, 1995, 37(8): 641-651, 671. (in Chinese)
[4]
MAE T. Physiological nitrogen efficiency in rice:Nitrogen utilization, photosynthesis, and yield potential. Plant Nutrition for Sustainable Food Production and Environment. Dordrecht: Springer Netherlands, 1997: 51-60.
[5]
FAN L Q, HOU Y, ZHENG L, SHI H Y, LIU Z, WANG Y X, LI S D, LIU L, GUO M Z, YANG Z R, LIU J. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene, 2023, 885: 147712.
[6]
ANDERSON D M, HUDSPETH R L, HOBBS S L, GRULA J W. Chlorophyll a/b-binding protein gene expression in cotton. Plant Physiology, 1993, 102(3): 1047-1048.

pmid: 8278525
[7]
刘其宝, 李黎贝, 张驰, 宿俊吉, 魏恒玲, 王寒涛, 喻树迅. 陆地棉叶片叶绿素含量与SSR标记的关联分析及优异等位变异的挖掘. 中国农业科学, 2017, 50(18): 3439-3449. doi: 10.3864/j.issn.0578-1752.2017.18.001.
LIU Q B, LI L B, ZHANG C, SU J J, WEI H L, WANG H T, YU S X. Association analysis of leaf chlorophyll content with SSR markers and exploration of superior alleles in upland cotton. Scientia Agricultura Sinica, 2017, 50(18): 3439-3449. doi: 10.3864/j.issn.0578-1752.2017.18.001. (in Chinese)
[8]
秦鸿德, 张天真. 棉花叶绿素含量和光合速率的QTL定位. 棉花学报, 2008, 20(5): 394-398.

doi: 10.11963/cs080514
QIN H D, ZHANG T Z. QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Cotton Science, 2008, 20(5): 394-398. (in Chinese)
[9]
SONG X L, ZHANG T Z. Molecular mapping of quantitative trait loci controlling chlorophyll content at different developmental stages in tetraploid cotton. Plant Breeding, 2010, 129(5): 533-540.
[10]
张建, 刘大军, 林刚, 张正圣. 陆地棉叶绿素质量分数QTL定位. 西南大学学报(自然科学版), 2011, 33(4): 1-4.
ZHANG J, LIU D J, LIN G, ZHANG Z S. QTL mapping for chlorophyll content in Upland cotton (Gossypium hirsutum L.). Journal of Southwest University (Natural Science Edition), 2011, 33(4): 1-4. (in Chinese)
[11]
郑巨云, 龚照龙, 王俊铎, 李雪源, 艾先涛, 梁亚军, 吐尔逊江, 多力坤, 莫明. 新疆陆地棉遗传连锁图谱构建及叶绿素含量和光合速率的QTL定位. 新疆农业科学, 2014, 51(9): 1577-1582.
ZHENG J Y, GONG Z L, WANG J D, LI X Y, AI X T, LIANG Y J, TERXUNJIANG, DUOLIKUN, MO M. Construction of linkage genetic map and QTL mapping for the chlorophyll content and photosynthetic rates in upland cotton. Xinjiang Agricultural Sciences, 2014, 51(9): 1577-1582. (in Chinese)
[12]
耿延会, 边盈盈, 裴文锋, 刘国元, 吴嫚, 臧新山, 李丹, 李兴丽, Zhang Jinfa, 于霁雯. 棉花陆海回交自交系群体叶绿素含量性状QTL定位. 棉花学报, 2020, 32(5): 463-471.

doi: 10.11963/1002-7807.gyhyjw.202009
GENG Y H, BIAN Y Y, PEI W F, LIU G Y, WU M, ZANG X S, LI D, LI X L, ZHANG J F, YU J W. QTL mapping of chlorophyll content in Gossypium hirsutum and Gossypium barbadense backcross inbred lines. Cotton Science, 2020, 32(5): 463-471. (in Chinese)
[13]
刘亚捷, 赵永锋, 田超, 贾晓艳, 郭晋杰, 祝丽英. 玉米叶绿素含量的全基因组关联分析及候选基因挖掘. 分子植物育种, 1-27 [2025-04-09]. http://kns.cnki.net/kcms/detail/46.1068.S.20240606.1357.002.html.
LIU Y J, ZHAO Y F, TIAN C, JIA X Y, GUO J J, ZHU L Y. Genome-wide association analysis and candidate gene mining of chlorophyll content in maize. Molecular plant breeding, 1-27[2025-04-09]. http://kns.cnki.net/kcms/detail/46.1068.S.20240606.1357.002.html. (in Chinese)
[14]
曹磊, 毛文文, 梁晓雪, 李翔, 王盼乔, 侯娟, 李琼, 胡建斌. 甜瓜叶绿素含量全基因组关联分析及候选基因预测. 河南农业大学学报, 2023, 57(2): 231-240.
CAO L, MAO W W, LIANG X X, LI X, WANG P Q, HOU J, LI Q, HU J B. Genome-wide association analysis of chlorophyll content in melon and prediction of the candidate genes. Journal of Henan Agricultural University, 2023, 57(2): 231-240. (in Chinese)
[15]
荐红举, 霍强, 高玉敏, 李阳阳, 谢玲, 魏丽娟, 刘列钊, 卢坤, 李加纳. 用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因. 作物学报, 2020, 46(10): 1557-1565.

doi: 10.3724/SP.J.1006.2020.04007
JIAN H J, HUO Q, GAO Y M, LI Y Y, XIE L, WEI L J, LIU L Z, LU K, LI J N. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis. Acta Agronomica Sinica, 2020, 46(10): 1557-1565. (in Chinese)
[16]
郑福兴, 颜安, 高雪, 严勇亮, 王睿, 耿洪伟. 水旱处理下小麦叶绿素相对含量全基因组关联分析. 植物遗传资源学报, 2021, 22(5): 1334-1347.

doi: 10.13430/j.cnki.jpgr. 20210309003
ZHENG F X, YAN A, GAO X, YAN Y L, WANG R, GENG H W. Genome-wide association scanning of chlorophyll SPAD in wheat under water and drought treatments. Journal of Plant Genetic Resources, 2021, 22(5): 1334-1347. (in Chinese)

doi: 10.13430/j.cnki.jpgr. 20210309003
[17]
LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26(5): 589-595.

doi: 10.1093/bioinformatics/btp698 pmid: 20080505
[18]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[19]
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
[20]
ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824.

doi: 10.1038/ng.2310 pmid: 22706312
[21]
戎福喜, 汤丽魁, 唐媛媛, 李志博, 赵瑞海, 雷军, 魏亦农. 海陆渐渗系棉花吐絮期叶绿素含量、荧光参数及相关性状的QTL定位分析. 棉花学报, 2015, 27(5): 417-426.

doi: 10.11963/issn.1002-7807.201505005
RONG F X, TANG L K, TANG Y Y, LI Z B, ZHAO R H, LEI J, WEI Y N. QTL mapping for leaf chlorophyll content, fast chlorophyll fluorescence parameters and related traits in cotton introgression lines during the boll opening stage. Cotton Science, 2015, 27(5): 417-426. (in Chinese)
[22]
胡根海, 王清连, 张金宝, 郭敏敏, 张展望, 张小涛, 方东波. 早熟棉花新材料叶绿素含量的变化规律. 湖北农业科学, 2009, 48(12): 2970-2972.
HU G H, WANG Q L, ZHANG J B, GUO M M, ZHANG Z W, ZHANG X T, FANG D B. Changes of chlorophyll content in new cotton varieties with short growth period. Hubei Agricultural Sciences, 2009, 48(12): 2970-2972. (in Chinese)
[23]
彭小峰, 张选, 刘素华, 邵青龙, 彭延. 棉花叶片叶绿素含量与纤维品质关系分析. 棉花科学, 2017, 39(1): 19-21, 27.
PENG X F, ZHANG X, LIU S H, SHAO Q L, PENG Y. Analysis on the relationship between chlorophyll content and fiber quality in cotton leaves. Cotton Sciences, 2017, 39(1): 19-21, 27. (in Chinese)
[24]
史大坤, 姚天茏, 刘楠楠, 邓敏, 段海洋, 王路林, 万炯, 高炯浩, 谢惠玲, 汤继华, 张雪海. 玉米叶绿素含量的全基因组关联分析. 中国农业科学, 2019, 52(11): 1839-1857. doi: 10.3864/j.issn.0578-1752.2019.11.001.
SHI D K, YAO T L, LIU N N, DENG M, DUAN H Y, WANG L L, WAN J, GAO J H, XIE H L, TANG J H, ZHANG X H. Genome-wide association study of chlorophyll content in maize. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857. doi: 10.3864/j.issn.0578-1752.2019.11.001. (in Chinese)
[25]
余静文. 基于全基因组重测序解析新疆海岛棉遗传变异及纤维性状相关基因的挖掘[D]. 杭州: 浙江大学, 2021.
YU J W. Analysis of genetic variation and gene mining related to fiber traits in Xinjiang Island cotton based on genome-wide resequencing[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[26]
VOON C P, GUAN X Q, SUN Y Z, SAHU A, CHAN M N, GARDESTRÖM P, WAGNER S, FUCHS P, NIETZEL T, VERSAW W K, SCHWARZLÄNDER M, LIM B L. ATP compartmentation in plastids and cytosol of Arabidopsis thaliana revealed by fluorescent protein sensing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(45): E10778-E10787.
[27]
XIA H, HONG Y, LI X, FAN R Y, LI Q, OUYANG Z W, YAO X, LU S P, GUO L, TANG S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. Molecular Breeding, 2022, 42(9): 54.
[28]
SOMERVILLE C. Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 2006, 22: 53-78.

pmid: 16824006
[29]
UMBRASAITE J, SCHWEIGHOFER A, MESKIENE I. Substrate analysis of Arabidopsis PP2C-type protein phosphatases. Methods in Molecular Biology, 2011, 779: 149-161.
[30]
ZHAO Y D. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 2010, 61: 49-64.

doi: 10.1146/annurev-arplant-042809-112308 pmid: 20192736
[31]
ANDRADE GALAN A G, DOLL J, SAILE S C, WÜNSCH M, ROEPENACK-LAHAYE E V, PAUWELS L, GOOSSENS A, BRESSON J, ZENTGRAF U. The non-jaz tify protein tify8 of Arabidopsis thaliana interacts with the hd-zip Ⅲ transcription factor revoluta and regulates leaf senescence. International Journal of Molecular Sciences, 2023, 24(4): 3079.
[32]
LEE C H, TENG Q, ZHONG R Q, YE Z H. Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan. Plant & Cell Physiology, 2012, 53(7): 1204-1216.
[33]
RENNIE E A, HANSEN S F, BAIDOO E E K, HADI M Z, KEASLING J D, SCHELLER H V. Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiology, 2012, 159(4): 1408-1417.
[34]
XIAO C W, SOMERVILLE C, ANDERSON C T. Polygalacturonase involved in expansion1 functions in cell elongation and flower development in Arabidopsis. The Plant Cell, 2014, 26(3): 1018-1035.
[35]
LIAN M Q, CHNG W H, LIANG J, YEO H Q, LEE C K, BELAID M, TOLLEMETO M, WACKER M G, CZARNY B, PASTORIN G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. Journal of Extracellular Vesicles, 2022, 11(12): e12283.
[36]
CHENG M C, KATHARE P K, PAIK I, HUQ E. Phytochrome signaling networks. Annual Review of Plant Biology, 2021, 72: 217-244.
[37]
SINGH A, BARANWAL V, SHANKAR A, KANWAR P, RANJAN R, YADAV S, PANDEY A, KAPOOR S, PANDEY G K. Rice phospholipase A superfamily: Organization, phylogenetic and expression analysis during abiotic stresses and development. PLoS ONE, 2012, 7(2): e30947.
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] LÜ Tao, SUN GuoQing, GUO DongCai, CHEN QuanJia, CAI YongSheng, FAN BiaoXing, QU YanYing, ZHENG Kai. Development and Effectiveness Evaluation of InDel Molecular Markers Closely Linked to Fiber Strength QTL in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(9): 1684-1701.
[3] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[4] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[5] ZHOU ZhiHui, GU XiaoBo, CHENG ZhiKai, CHANG Tian, ZHAO TongTong, WANG YuMing, DU YaDan. Inversion of Chlorophyll Content of Film-Mulched Maize Based on Image Segmentation [J]. Scientia Agricultura Sinica, 2024, 57(6): 1066-1079.
[6] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[7] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[8] RONG YaSi, LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei. Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3957-3973.
[9] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[10] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[11] YIN ZiHe, YANG ChengCheng, ZHAO YuHui, ZHAO Li, LÜ XiuRong, YANG ZhenChao, WU YongJun. Sequencing and Functional Analysis of Tomato circRNA During Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4288-4303.
[12] ZHANG YuJia, CUI KaiWen, DUAN LiSheng, CAO AiPing, XIE QuanLiang, SHEN HaiTao, WANG Fei, LI HongBin. Identification and Expression of CAD and CAD-Like Gene Families from Gossypium barbadense and Their Response to Verticillium dahliae [J]. Scientia Agricultura Sinica, 2023, 56(19): 3759-3771.
[13] GAO GuangLiang, ZHANG KeShan, ZHAO XianZhi, XU GuoYang, XIE YouHui, ZHOU Li, ZHANG ChangLian, WANG QiGui. Identification of Molecular Markers Associated with Goose Egg Quality Through Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3894-3904.
[14] CHU YanMeng, MAO YingChao, CAI Jian, ZHOU Qin, DAI TingBo, WANG Xiao, JIANG Dong. Effect of Phytochlorin Iron on Stress Tolerance to Waterlogging in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(10): 1848-1858.
[15] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!