Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 101-116.doi: 10.3864/j.issn.0578-1752.2025.01.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil

DU JiaQi1(), ZHANG ZiWei1, WANG RuoFei1, LI Xing1, GUO HongYan2, YANG Shuo1, FENG Cheng1, HE TangQing1, Giri Bhoopander3, ZHANG XueLin1,*()   

  1. 1 College of Agronomy, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Key Laboratory of Crop Growth and Development Regulation, Ministry of Education, Zhengzhou 450046, China
    2 Shangqiu Economic Crop Technology Promotion Center, Shangqiu 476000, Henan, China
    3 Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi 110021, India
  • Received:2024-01-11 Accepted:2024-03-11 Online:2025-01-01 Published:2025-01-07
  • Contact: ZHANG XueLin

Abstract:

【Background】Organic fertilizer substitution (OF) is an effective chemical fertilizer reduction strategy, which can change the ratio of soil organic carbon to inorganic nitrogen (N), so as to regulate nitrous oxide (N2O) emission. Similarly, arbuscular mycorrhizal fungi (AMF) forms a symbiotic strategy with most terrestrial plants, increases plant soil nutrient uptake, and affects soil N2O emission. However, the interactive effects of both OF and AMF on soil N2O emissions are poorly understood, especially in different agricultural soil environments, and the mechanism of their interaction is also unclear. 【Objective】 This study aimed to explore the mechanical effects of both OF and AMF on soil N2O emissions during maize growth periods in different soil types, so as to provide the appropriate methods to reduce chemical fertilizer application for farmland management.【Method】Taking Shajiang black soil (SJ) and Fluvo-aquic soils (CT) as research object, a two factor experiment with organic fertilizers replacing chemical fertilizers (0%OF: only chemical N fertilizer; 25%OF: equal N organic fertilizer replacing 25% chemical N fertilizer; 50%OF: equal N organic fertilizer replacing 50% chemical N fertilizer) and AMF (M+, inoculation of arbuscular mycorrhizal fungi; M-, no inoculation of arbuscular mycorrhizal fungi) was carried out in 2020, with a non-fertilization control (CK). The maize biomass, N accumulation, grain yield, soil inorganic N, and soil N2O emission flux were measured during maize growth period in both the soil types, and a relative abundance of denitrification functional genes, such as nirK and nirS, was investigated too. 【Result】There was no significant difference in maize grain yield among different OF treatments under the conditions of Shajiang black soil, while grain yield showed decreasing tendency with the OFS ratio increasing in Fluvo-aquic soils. Compared with 0%OF treatment, the cumulative N2O emissions under 25%OF and 50%OF treatments in Shajiang black soil reduced by 17.6% and 18%, respectively, and by 13.5% and 3.9% in the Fluvo-aquic soil. Compared with non-AMF (M-treatment), the presence of AMF (M+ treatment) increased maize grain nitrate reductase, nitrite reductase, glutamine synthase, glutamate synthase, and maize grain yield, while reduced soil N2O emissions. The reduction of cumulative N2O emissions in Shajiang black soil was by 26.5%-28.2%, and by 2.7%-13.5% in Fluvo-aquic soil; the reduction in case of 25% OFM+ treatment was 34.6% and 22.5% in Shajiang black soil and Fluvo-aquic soils respectively, while the root total length, root surface area, root volume and root diameter per plant increased significantly. Correlation analysis showed that N2O emissions were positively related with soil NH4+ and NO3- under both Shajiang black soil and Fluvo-aquic soil conditions, while negatively related with AMF infection rate in both Shajiang black and Fluvo-aquic soils; whereas, the emissions were positively related with the copy numbers of nirK and nirS genes under Shajiang black soil conditions.【Conclusion】The replacing chemical fertilizers with organic fertilizers and inoculation with AMF could reduce N2O emissions under different soil types. This interactive effect might be the result of expanding root N absorption area through AMF colonization, and by regulating the expression of key functional microorganisms in soil denitrification. Therefore, the study recommends replacement of 25% chemical fertilizer (OF25%) with organic fertilizers and inoculation with AMF could be an ideal fertilizer management method to maintain maize production stable and reduce chemical fertilizer application rate and greenhouse gas emissions.

Key words: N2O emissions, organic fertilizer substitution, arbuscular mycorrhizal fungi, denitrifying microorganisms, Shajiang black soil, Fluvo-aguic soil

Table 1

Effects of organic fertilizer substitution and AMF on maize grain yield, grain N accumulation and soil N2O flux rate"

项目 Item 土壤类型 Soil type 有机肥替代化肥 OF 菌根处理 M 施肥×菌根 OF×M
籽粒产量
Grain yield (g/plant)
砂姜黑土SJ 18.77*** 5.85* 0.23
潮土CT 90.44*** 13.99** 0.74
籽粒氮素累积量
Grain N accumulation(mg/plant)
砂姜黑土SJ 30.55*** 26.79*** 6.24**
潮土CT 40.60*** 28.73*** 3.17*
N2O排放通量
N2O flux rate (μg·m-2·h-1)
砂姜黑土SJ 23.74*** 46.02*** 4.56*
潮土CT 8.33** 6.13* 0.51

Fig. 1

Effects of organic fertilizer substitution and AMF on maize grain yield and their N accumulation Different lowercase letters show the significant differences among different treatments (P<0.05). The same as below"

Fig. 2

Effects of organic fertilizer substitution and AMF on grain N assimilation enzyme activities in Shajiang black soil"

Fig. 3

Effects of organic fertilizer substitution and AMF on maize plant biomass and their N accumulation"

Fig. 4

Effects of organic fertilizer substitution and AMF on maize root traits and root infection rate"

Fig. 5

Temporal variations of soil N2O emissions during maize growth period in SJ and CT soil"

Fig. 6

Effects of organic fertilizer substitution and AMF on soil N2O flux rate, cumulative N2O flux, N2O emission factor and flux intensity"

Table 2

Effects of organic fertilizer substitution and AMF on soil physicochemical properties and abundance of key denitrification genes"

处理
Treatments
铵态氮
NH4+-N
(mg·kg-1)
硝态氮
NO3-N
(mg·kg-1)
pH 有机碳
Soil organic carbon
(g·kg-1)
nirK
(×106 copies·g -1)
nirS
(×106 copies·g -1)
nirK/nirS
砂姜黑土
SJ
潮土
CT
砂姜黑土
SJ
潮土
CT
砂姜黑土
SJ
潮土
CT
砂姜黑土
SJ
潮土
CT
砂姜黑土
SJ
潮土
CT
砂姜黑土
SJ
潮土
CT
砂姜黑土
SJ
潮土
CT
M- CK 6.39±0.61de 1.07±0.01 3.91±0.04 3.86±0.05 5.9±0.16 7.8±0.26 12.1±0.2c 8.2±0.1b 5.7±0.5bc - 55.3±0.9d - 0.1±0.01b -
0%OF 5.72±0.29e 1.08±0.01 3.89±0.03 3.89±0.12 6.0±0.10 7.8±0.28 12.9±0.2b 8.5±0.1ab 6.4±0.6ab - 78.4±0.6b - 0.08±0.01bc -
25%OF 8.66±0.38a 1.07±0.01 3.98±0.04 3.83±0.04 5.9±0.23 7.8±0.23 12.7±0.3bc 8.4±0.2b 6.0±0.6bc - 68.1±3.0c - 0.09±0.01bc -
50%OF 8.24±0.32ab 1.05±0.02 3.95±0.04 3.76±0.03 6.0±0.19 7.9±0.24 12.9±0.2b 8.6±0.1ab 7.8±0.7a 100.0±3.5a - 0.08±0.01bc -
M+ CK 7.69±0.37abc 1.05±0.01 3.98±0.04 3.71±0.06 6.0±0.23 7.7±0.26 13.1±0.2b 8.5±0.1ab 4.4±0.3c - 54.8±3.5d - 0.08±0.01bc -
0%OF 7.00±0.26cd 1.07±0.01 3.93±0.09 3.82±0.08 6.2±0.20 7.9±0.12 13.8±0.2a 8.6±0.1ab 4.3±0.4bc - 37.0±2.4e - 0.14±0.02a -
25%OF 7.23±0.26bcd 1.06±0.01 3.92±0.05 3.69±0.06 6.0±0.05 7.7±0.14 13.8±0.3a 8.6±0.2ab 4.9±0.3bc - 54.6±3.9d - 0.09±0.01bc -
50%OF 6.58±0.21cde 1.04±0.01 3.91±0.02 3.71±0.11 6.0±0.17 8.2±0.19 13.9±0.3a 8.8±0.1a 5.4±0.8bc - 81.3±5.1b - 0.07±0.01c -
有机肥替代处理OF 15.45*** 2.33 0.955 0.95 0.30 0.13 13.58*** 3.04* 2.71 - 53.34*** - 5.27** -
菌根处理
M
5.78* 0.66 0.77 3.95 0.52 2.17 7.89* 5.90* 14.69*** - 67.30*** - 1.16 -
OF×M 0.06 0.06 0.06 0.24 0.03 0.25 1.27 0.17 0.58 - 14.26*** - 6.85** -

Fig. 7

Principal component analysis of maize yield (a, b) and N2O emission flux (c, d) with soil physicochemical properties, plant nitrogen accumulation, and root infection rate AB: Aboveground biomass; RB: Root biomass; GN: Grain N accumulation; PN: Aboveground N accumulation; RN: Root N accumulation; NR: Nitric acid reductase; NiR: Nitrite reductase; GS: Glutamine synthetase; GOGAT: Glutamate synthetase; SOC: Soil organic carbon content; RL: Root total length; RV: Root volume; RS: Root surface area; RD: Root diameter"

[1]
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949): 123-125.
[2]
谢瑞芝, 明博. 玉米生产系统对气候变化的响应与适应. 中国农业科学, 2021, 54(17): 3587-3591. doi: 10.3864/j.issn.0578-1752.2021.17.003.
XIE R Z, MING B. Response and adaptation of maize production system to climate change. Scientia Agricultura Sinica, 2021, 54(17): 3587-3591. doi: 10.3864/j.issn.0578-1752.2021.17.003. (in Chinese)
[3]
AGUILERA E, LASSALETTA L, SANZ-COBENA A, GARNIER J, VALLEJO A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems and Environment, 2013, 164: 32-52.
[4]
XIAO L L, SUN Q B, YUAN H T, LIAN B. A practical soil management to improve soil quality by applying mineral organic fertilizer. Acta Geochimica, 2017, 36(2): 198-204.
[5]
SONG H, WANG J, ZHANG K, ZHANG M Y, HUI R, SUI T Y, YANG L, DU W B, DONG Z R. A 4-year field measurement of N2O emissions from a maize-wheat rotation system as influenced by partial organic substitution for synthetic fertilizer. Journal of Environmental Management, 2020, 263: 110384.
[6]
HUANG R, WANG Y Y, GAO X S, LIU J, WANG Z F, GAO M. Nitrous oxide emission and the related denitrifier community: a short-term response to organic manure substituting chemical fertilizer. Ecotoxicology and Environmental Safety, 2020, 192: 110291.
[7]
卜容燕, 李敏, 韩上, 程文龙, 王慧, 孙志祥, 唐杉, 武际. 有机无机肥配施对双季稻轮作系统产量、温室气体排放和土壤养分的综合效应. 应用生态学报, 2021, 32(1): 145-153.

doi: 10.13287/j.1001-9332.202101.023
BU R Y, LI M, HAN S, CHENG W L, WANG H, SUN Z R, TANG S, WU J. Comprehensive effects of combined application of organic and inorganic fertilizer on yield, greenhouse gas emissions, and soil nutrient in double-cropping rice systems. Chinese Journal of Applied Ecology, 2021, 32(1): 145-153. (in Chinese)
[8]
HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299.
[9]
JIANG S T, AN X R, SHAO Y D, KANG Y L, CHEN T S, MEI X L, DONG C X, XU Y C, SHEN Q R. Responses of arbuscular mycorrhizal fungi occurrence to organic fertilizer: A meta-analysis of field studies. Plant and Soil, 2021, 469(1/2): 1-17.
[10]
LI Y J, ZHENG Q, YANG R, ZHUANG S, LIN W, LI Y Z. Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. Journal of Cleaner Production, 2021, 326: 129442.
[11]
BUCHEN C, LEWICKA-SZCZEBAK D, FLESSA H, WELL R. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules. Rapid Communications in Mass Spectrometry, 2018, 32(13): 1053-1067.
[12]
LIANG D, ROBERTSON G P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity. Global Change Biology, 2021, 27(21): 5599-5613.
[13]
QIU Y P, JIANG Y, GUO L J, ZHANG L, BURKEY K O, ZOBEL R W, REBERG-HORTON S C, SHEW H D, HU S J. Shifts in the composition and activities of denitrifiers dominate CO2 stimulation of N2O emissions. Environmental Science and Technology, 2019, 53(19): 11204-11213.
[14]
谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20): 3934-3943. doi:10.3864/j.issn.0578-1752.2016.20.008.
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943. doi:10.3864/j.issn.0578-1752.2016.20.008. (in Chinese)
[15]
赵吉霞, 禹妍彤, 周芸, 李永梅, 范茂攀. 有机肥等氮替代化肥对玉米产量和氮素吸收利用效率的影响. 水土保持研究, 2022, 29(5): 374-381.
ZHAO J X, YU Y T, ZHOU Y, LI Y M, FAN M P. Effect of organic manure replacing chemical nitrogenous fertilizer on main yield and nitrogen uptake and utilization efficiency. Research of Soil and Water Conservation, 2022, 29(5): 374-381. (in Chinese)
[16]
ZHANG X Y, FANG Q C, ZHANG T, MA W Q, VELTHOF G L, HOU Y, OENEMA O, ZHANG F S. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology, 2020, 26(2): 888-900.

doi: 10.1111/gcb.14826 pmid: 31495039
[17]
LUO G W, LI L, FRIMAN V P, GUO J J, GUO S W, SHEN Q R, LING N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, 2018, 124: 105-115.
[18]
ZHANG Y R, NIE Y, LIU Y L, HUANG X C, YANG Y H, XIONG H, ZHU H Q, LI Y. Characteristics of greenhouse gas emissions from yellow paddy soils under long-term organic fertilizer application. Sustainability, 2022, 14(19): 12574.
[19]
孟磊, 蔡祖聪, 丁维新. 长期施肥对华北典型潮土N分配和N2O排放的影响. 生态学报, 2008, 28(12): 6197-6203.
MENG L, CAI Z C, DING W X. Effects of long-term fertilization on N distribution and N2O emission in fluvo-aquci soil in North China. Acta Ecologica Sinica, 2008, 28(12): 6197-6203. (in Chinese)
[20]
JIA J X, LI B, CHEN Z Z, XIE Z B, XIONG Z Q. Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition, 2012, 58(4): 503-509.
[21]
GUI H, GAO Y, WANG Z H, SHI L L, YAN K, XU J C. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. The Science of the Total Environment, 2021, 774: 145133.
[22]
ZHANG X L, QIU Y P, GILLIAM F S, GILLESPIE C J, TU C, REBERG-HORTON S C, HU S J. Arbuscular mycorrhizae shift community composition of N-cycling microbes and suppress soil N2O emission. Environmental Science and Technology, 2022, 56(18): 13461-13472.
[23]
CHEN H, ZHOU J, LI B, XIONG Z Q. Yield-scaled N2O emissions as affected by nitrification inhibitor and overdose fertilization under an intensively managed vegetable field: A three-year field study. Atmospheric Environment, 2019, 206: 247-257.
[24]
XU F, LIU Y L, DU W C, LI C L, XU M L, XIE T C, YIN Y, GUO H Y. Response of soil bacterial communities, antibiotic residuals, and crop yields to organic fertilizer substitution in North China under wheat-maize rotation. Science of the Total Environment, 2021, 785: 147248.
[25]
李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 李潮海, 杨青华, 张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响. 中国农业科学, 2022, 55(5): 948-961. doi:10.3864/j.issn.0578-1752. 2022.05.009.
LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, LI C H, YANG Q H, ZHANG X L. Effect of organic fertilizer replacing chemical fertilizers on greenhouse gas emission under the conditions of same nitrogen fertilizer input in maize farmland. Scientia Agricultura Sinica, 2022, 55(5): 948-961. doi:10.3864/j.issn.0578-1752.2022.05.009. (in Chinese)
[26]
温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51(11): 2136-2142. doi:10.3864/j.issn.0578-1752.2018.11.011.
WEN Y C, ZHANG Y D, YUAN L, LI W, LI Y Q, LIN Z, ZHAO B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011. (in Chinese)
[27]
刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 38-47.
LIU J Z, XIE J G, ZHANG K, WANG X F, HOU Y P, YIN C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin province. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 38-47. (in Chinese)
[28]
米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. 中国科学:生命科学, 2010, 40(12): 1112-1116.
MI G H, CHEN F J, WU Q P, LAI N W, YUAN L X, ZHANG F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China: Life Sciences, 2010, 53(12): 1369-1373. (in Chinese)
[29]
HATI K M, MANDAL K G, MISRA A K, GHOSH P K, BANDYOPADHYAY K K. Effect HATI K M, MANDAL K G, MISRA A K, GHOSH P K, BANDYOPADHYAY K K. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresource Technology, 2006, 97(16): 2182-2188.

doi: 10.1016/j.biortech.2005.09.033 pmid: 16289791
[30]
郭喜军, 谢军红, 李玲玲, 王嘉男, 康彩睿, 彭正凯, 王进斌, Setorkwami Fudjoe, 王林林. 氮肥用量及有机无机肥配比对陇中旱农区玉米光合特性及产量的影响. 植物营养与肥料学报, 2020, 26(5): 806-816.
GUO X J, XIE H J, LI L L, WANG J N, KANG C R, PENG Z K, WANG J B, FUDJOE S, WANG L L. Appropriate nitrogen fertilizer rate and organic N ratio for satisfactory photosynthesis and yield of maize in dry farming area of Longzhong, Gansu Province. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 806-816. (in Chinese)
[31]
WEI Z B, YING H, GUO X W, ZHUANG M H, CUI Z L, ZHANG F S. Substitution of mineral fertilizer with organic fertilizer in maize systems: A meta-analysis of reduced nitrogen and carbon emissions. Agronomy, 2020, 10(8): 1149-1163.
[32]
VERBRUGGEN E, RÖLING W F M, GAMPER H A, KOWALCHUK G A, VERHOEF H A, VAN DER HEIJDEN M G A. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 2010, 186(4): 968-979.

doi: 10.1111/j.1469-8137.2010.03230.x pmid: 20345633
[33]
BI Y L, QIU L, ZHAKYPBEK Y, JIANG B, CAI Y, SUN H. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China. Agricultural Water Management, 2018, 201: 278-286.
[34]
BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1(1): 48-59.
[35]
HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759.
[36]
LIU S W, LIN F, WU S, JI C, SUN Y, JIN Y G, LI S Q, LI Z F, ZOU J W. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Global Change Biology, 2017, 23(6): 2520-2532.
[37]
SENBAYRAM M, CHEN R, BUDAI A, BAKKEN L, DITTERT K. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems and Environment, 2011, 147(1): 4-12.
[38]
YANG Y D, NIE J W, WANG S, SHI L L, LI Z Z, ZENG Z H, ZANG H D. Differentiated responses of nirS- and nirK-type denitrifiers to 30 years of combined inorganic and organic fertilization in a paddy soil. Archives of Agronomy and Soil Science, 2021, 67(1): 79-92.
[39]
STORER K, COGGAN A, INESON P, HODGE A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytologist, 2018, 220(4): 1285-1295.
[40]
BENDER S F, PLANTENGA F, NEFTEL A, JOCHER M, OBERHOLZER H R, KÖHL L, GILES M, DANIELL T J, VAN DER HEIJDEN M G A. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal, 2014, 8(6): 1336-1345.
[41]
WU Q S, SRIVASTAVA A K, ZOU Y N. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87.
[42]
BARRETT G, CAMPBELL C D, FITTER A H, HODGE A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48(1): 102-105.
[43]
VERESOGLOU S D, SEN R, MAMOLOS A P, VERESOGLOU D S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99(6): 1339-1349.
[44]
CHEN Y L, CHEN B D, HU Y J, LI T, ZHANG X, HAO Z P, WANG Y S. Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia, 2013, 56(4/5/6): 205-212.
[1] LI Han, JIANG ShangTao, PENG HaiYing, LI PeiGen, GU ChangYi, ZHANG JinLian, CHEN TingSu, XU YangChun, SHEN QiRong, DONG CaiXia. Effects of Inoculation with Indigenous and Exogenous Arbuscular Mycorrhizal Fungi on Drought Resistance of Pyrus betulaefolia and Its Adaptation Mechanism [J]. Scientia Agricultura Sinica, 2024, 57(1): 159-172.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[4] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[5] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[6] LI YongHua,WU XuePing,HE Gang,WANG ZhaoHui. Benefits of Yield, Environment and Economy from Substituting Fertilizer by Manure for Wheat Production of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890.
[7] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
[8] YaJing XI,JunYu WANG,YinKun LI,XuePing WU,XiaoXiu LI,BiSheng WANG,ShengPing LI,XiaoJun SONG,CaiCai LIU. Effects of Drip Irrigation Water and Fertilizer Integration Combined with Organic Fertilizers on Soil N2O Emission and Enzyme Activity [J]. Scientia Agricultura Sinica, 2019, 52(20): 3611-3624.
[9] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
[10] ZHANG XueLin, ZHOU YaNan, LI XiaoLi, HOU XiaoPan, AN TingTing, WANG Qun. Effects of Nitrogen Fertilizer on Crop Residue Decomposition and Nutrient Release Under Lab Incubation and Field Conditions [J]. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!