Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3507-3521.doi: 10.3864/j.issn.0578-1752.2024.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat

SHANG Hang(), CHENG YuKun, REN Yi, GENG HongWei()   

  1. College of Agronomy, Xinjiang Agricultural University/Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052
  • Received:2024-03-11 Accepted:2024-04-26 Online:2024-09-16 Published:2024-09-29
  • Contact: GENG HongWei

Abstract:

【Objective】 Starch is the main component of wheat kernel and plays an important role in processing. The gelatinization characteristic of starch is an important index to evaluate its quality. The genetic variation of starch gelatinization was studied to provide basis for improving wheat quality. 【Method】 Seven starch gelatinization traits, including gelatinization temperature, peak time, peak viscosity, trough viscosity, final viscosity, decay value and recovery value, were phenotypically determined in 205 winter wheat varieties. Genome-wide association analysis was performed using 90K chip, and haplotype analysis was performed on the stable and significant sites found. 【Result】 The seven characteristics, such as pasting temperature, showed abundant variation in different environments, and the coefficient of variation of attenuation value was the largest (29.31%-31.14%). There were significant differences among genotype, environment and genotype × environment, and the generalized heritability was 0.69-0.86. Through genome-wide association analysis, we found 198 loci that showed significant associations with seven traits. It was distributed in 20 other linked groups except 6D chromosome. There were 58 sites that were stable in 2 or more environments, involving all 7 traits, such as pasting temperature (10), peak time (5), peak viscosity (12), trough viscosity (10), final viscosity (7), break down (4) and set back (10), which could explain 5.54%-22.21% of genetic variation, twenty-one new sites were identified. By haplotype analysis of multiple effector sites that exist in multiple environments and have high phenotypic contribution, Four haplotypes, Hap1 (66.84%), Hap2 (16.84%), Hap3 (9.70%) and Hap4 (6.63%), were found at Kukri_c17417_407 on chromosome 4A, which were significantly related to peak viscosity and break down. Where Hap2 is the peak viscosity and high break down. (P<0.0001). The distribution frequency of varieties (lines) containing haplotype Hap2 in different ecological regions was from high to low as Huanghuai winter wheat region>foreign varieties>Southwest winter wheat region>Middle and lower reaches of Yangtze River winter wheat region>Northern winter wheat region. There were 11 single cause multieffect sites, among which there were 3 multiple effect sites associated with final viscosity, set back, peak time and trough viscosity. Jagger_c4026_328 and other 11 stable genetic loci located on 1B, 2A, 3A, 3B, 4A, 4B, 5B and 6B were mined, and 11 candidate genes that might be related to wheat starch gelatinization traits were screened. 【Conclusion】 In this study, RVA parameters had high heritability, and the RVA parameters of wheat starch were different in different environments. In this study, RVA parameters had high heritability, and the RVA parameters of wheat starch were different in different environments. 58 stable loci were detected that were significantly associated with starch gelatinization traits, and 4 different haplotypes were identified on chromosome 4A that were significantly associated with peak viscosity and break down, and 11 candidate genes related to starch gelatinization were screened, which could provide help for marker-assisted high-quality wheat breeding.

Key words: winter wheat, starch gelatinization, SNP marker, GWAS, haplotype, candidate genes

Table 1

Phenotypic analysis of RVA parameters of 205 materials in different environments"

性状
Traits
环境
Environment
范围
Range
平均值±标准差
Mean±SD
变异系数
CV (%)
偏度
Ske.
峰度
Kur.
遗传力
h2
糊化温度PTT (℃) E1 68.58-90.45 84.96±5.52 6.49 -1.71 1.89 0.69
E2 68.90-90.05 84.69±5.95 7.03 -1.70 1.50
峰值时间
PT (min)
E1 5.03-5.90 5.58±0.17 3.05 -0.73 0.51 0.72
E2 4.87-6.13 5.74±0.22 3.91 -1.43 2.35
峰值黏度
PV (CP)
E1 506-2244 1411±311 22.01 -0.11 0.26 0.84
E2 603-2337 1529±334 21.84 -0.38 0.26
低谷黏度
TV (CP)
E1 188-1472 978±252 25.81 -0.62 0.28 0.84
E2 158-1537 1047±280 26.72 -1.06 0.68
最终黏度
FV (CP)
E1 406-2812 1961±453 23.10 -0.68 0.56 0.82
E2 333-2738 2005±474 23.65 -1.25 1.32
衰减值
BD (CP)
E1 179-975 432.±127 29.31 1.30 2.52 0.86
E2 130-1031 483±150 31.14 0.97 1.14
回生值
SB (CP)
E1 216-1432 983±210 21.37 -0.61 0.72 0.80
E2 175-1244 963±198 20.54 -1.53 2.54

Fig. 1

Population structure analysis of 205 wheat varieties (lines) A: Estimation of ∆K value in population; B: Group structure diagram; C: Principal component analysis"

Fig. 2

Manhattan and Q-Q maps of wheat starch gelatinization characters based on BLUP values A: Trough viscosity; B: Peak time; C: Peak viscosity; D: Pasting temperature; E: Set back; F: Break down; G: Final viscosity"

Table 2

Stable sites significantly associated with wheat starch gelatinization traits"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position
P
P-value
表型贡献率
R2
环境
Environment
低谷黏度
TV (CP)
Excalibur_c47219_186 2A 711.64-718.22 4.31E-04-9.81E-04 5.65-6.95 E2/E3
CAP8_c5161_541 2A 731.16 2.25E-04-8.88E-04 5.81-7.23 E1/E3
Excalibur_rep_c70961_190 3A 154.03 3.05E-04-4.54E-04 6.30-6.69 E1-E2
GENE-1205_484 6A 611.31 1.81E-04-9.63E-04 5.72-7.36 E2/E3
RAC875_c13093_86 7A 675.40-678.58 1.76E-04-9.07E-04 5.78-7.44 E2/E3
BS00067966_51 2B 725.96 2.25E-04-7.05E-04 6.29-8.18 E2/E3
BS00106143_51 4B 604.2 3.72E-04-8.25E-04 5.70-6.58 E2/E3
RAC875_c10859_229 4B 615.56 2.80E-04-9.29E-04 5.68-6.96 E2/E3
wsnp_Ex_c4815_8597139 6B 24.92-30.89 1.23E-04-9.93E-04 5.68-9.55 E1/E2/E3
BS00111247_51 7B 733.60-734.30 2.30E-04-7.78E-04 6.95-8.92 E1/E3
峰值时间
PT (min)
CAP8_c5161_541 2A 731.16 1.53E-04-9.24E-04 5.97-10.12 E1/E2/E3
Ku_c12469_837 5A 596.47-596.52 2.18E-04-9.79E-04 5.56-7.60 E2/E3
BS00067966_51 2B 725.96 2.06E-04-5.35E-04 6.02-9.32 E1/E2/E3
BS00071042_51 3B 796.31 1.58E-04-3.30E-04 9.31-10.96 E2/E3
wsnp_Ex_c4815_8597139 6B 24.92-30.15 1.50E-04-9.87E-04 5.62-11.55 E1/E2/E3
峰值黏度
PV (CP)
Kukri_c3289_932 3A 27.01 2.23E-04-6.52E-04 5.97-6.99 E1/E3
Excalibur_rep_c70961_190 3A 154.03 5.65E-04-6.41E-04 5.95-6.07 E1/E3
Kukri_c17417_407 4A 688.1 2.88E-05-6.59E-04 5.94-9.09 E1/E2/E3
Excalibur_rep_c101560_1124 4A 726.45-734.00 4.75E-04-5.62E-04 8.30-9.49 E1/E2
GENE-1205_484 6A 611.31-611.33 1.85E-04-6.27E-04 6.13-7.38 E2/E3
RAC875_c13093_86 7A 675.40-678.58 3.12E-04-8.96E-04 5.73-6.84 E2/E3
BS00067966_51 2B 725.96 5.81E-04-7.88E-04 5.71-6.05 E2/E3
BS00014695_51 3B 636.45 5.53E-04-5.89E-04 6.10-8.63 E2/E3
Tdurum_contig47622_234 4B 13.41 4.09E-04-7.62E-04 5.90-6.36 E1/E3
BS00022525_51 5B 10.44 5.38E-04-8.97E-04 6.08-6.51 E2/E3
Excalibur_c39830_862 6B 24.92-30.89 6.77E-06-5.03E-04 6.49-10.83 E1/E2/E3
BS00111247_51 7B 734.3 5.97E-04-8.61E-04 5.97-6.50 E1/E2/E3
糊化温度
PTT (℃)
BobWhite_c2002_100 2A 535.72 2.85E-04-7.02E-04 5.88-6.81 E1/E3
BS00084348_51 3A 9.85-9.86 1.66E-04-5.46E-04 6.15-7.29 E1/E3
RAC875_c4454_1270 7A 127.77 8.94E-04-9.26E-04 5.58-5.62 E1/E3
BS00064465_51 1B 2.33 1.72E-04-1.84E-04 10.05-13.10 E1/E3
wsnp_Ku_c31_62657 2B 75.61 4.31E-05-5.82E-04 6.28-8.97 E1/E3
BS00022512_51 3B 687.76-694.02 5.80E-05-9.93E-04 5.58-10.45 E1/E2/E3
Kukri_c45876_157 6B 716.26 2.56E-04-7.31E-04 6.74-8.07 E2/E3
CAP8_c3231_244 3D 2.80-3.99 6.84E-04-7.81E-04 6.00-8.01 E1/E2
BobWhite_c21589_200 3D 526.05 1.79E-04-2.18E-04 7.02-7.27 E1/E3
D_GDS7LZN01CWBG5_74 7D 516.03-517.22 2.80E-04-7.53E-04 5.94-7.03 E2/E3
回升值
SB (CP)
Jagger_c4026_328 2A 711.64-718.22 1.14E-04-3.07E-04 5.87-8.99 E1/E2/E3
CAP8_c5161_541 2A 731.16 1.28E-04-3.09E-04 5.92-6.92 E2/E3
Excalibur_rep_c70961_190 3A 154.03 3.86E-04-4.48E-04 6.75-7.29 E1/E3
RFL_Contig6053_3082 6A 597.79 8.00E-04-8.03E-04 5.74-5.84 E1/E3
BS00067966_51 2B 725.96 3.19E-04-3.42E-04 6.61-7.83 E1/E2/E3
RAC875_c20041_976 3B 60.87 5.27E-04-5.29E-04 8.00-8.80 E1/E3
BS00106143_51 4B 604.2 6.36E-04-7.66E-04 5.68-7.83 E2/E3
RAC875_c10859_229 4B 615.56 6.19E-04-6.78E-04 7.21-8.00 E2/E3
wsnp_Ex_c4815_8597139 6B 25.26-30.15 8.05E-04-8.24E-04 6.27-7.50 E2/E3
BS00042112_51 7B 733.60-734.30 9.35E-04-9.92E-04 7.04-8.00 E1/E3
衰减值
BD (CP)
Kukri_c17417_407 4A 688.1 1.53E-10-8.92E-04 5.55-22.21 E1/E2/E3
BS00044040_51 7A 175.69 5.92E-04-8.45E-04 5.70-6.04 E1/E3
RAC875_c40444_84 1B 22.16 1.81E-04-5.75E-04 10.07-12.35 E2/E3
BS00065936_51 5B 571.64 3.95E-06-6.76E-05 8.18-11.10 E1/E2/E3
最终黏度
FV (CP)
CAP8_c5161_541 2A 731.16 1.11E-04-9.02E-04 5.81-7.86 E2/E3
Excalibur_rep_c70961_190 3A 154.03 1.33E-04-9.54E-04 5.54-7.51 E1/E2/E3
BS00067966_51 2B 725.96 6.72E-05-2.66E-04 6.86-8.25 E1/E2/E3
BS00106143_51 4B 604.2 2.00E-04-6.16E-04 5.99-7.22 E2/E3
RAC875_c10859_229 4B 615.56 1.60E-04-4.95E-04 6.28-7.53 E2/E3
wsnp_Ex_c4815_8597139 6B 24.92-30.15 7.39E-05-9.45E-04 5.64-8.64 E1/E2/E3
BS00042112_51 7B 733.60-739.93 1.33E-04-8.47E-04 7.30-8.73 E1/E2/E3

Table 3

Stable sites significantly associated with 2 or more starch gelatinization traits"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position
P
P-value
表型贡献率
R2
环境
Environment
最终黏度、回生值FV、SB BS00042112_51 7B 733.60-739.93 1.33E-04-9.92E-04 7.04-8.73 E1/E2/E3
最终黏度、回生值、峰值黏度、峰值时间、低谷黏度 FV、SB、PV、PT、TV BS00067966_51 2B 725.96 6.72E-05-7.88E-04 5.71-9.32 E1/E2/E3
最终黏度、回生值、低谷黏度 FV、SB、TV BS00106143_51 4B 604.20 2.00E-04-8.25E-04 5.70-8.00 E2/E3
峰值黏度、低谷黏度 PV、TV BS00111247_51 7B 733.60-734.30 2.30E-04-8.61E-04 5.97-8.92 E1/E2/E3
最终黏度、回生值、峰值时间、低谷黏度
FV、SB、PT、TV
CAP8_c5161_541 2A 731.16 1.11E-04-9.24E-04 5.81-10.12 E1/E2/E3
最终黏度、回生值、峰值时间、低谷黏度
FV、SB、PT、TV
wsnp_Ex_c4815_8597139 6B 24.92-30.89 6.77E-06-8.24E-04 5.62-11.55 E1/E2/E3
最终黏度、回生值、峰值黏度、低谷黏度
FV、SB、PV、TV
Excalibur_rep_c70961_190 3A 154.03 1.33E-04-9.54E-04 5.54-7.51 E1/E2/E3
峰值黏度、低谷黏度 PV、TV GENE-1205_484 6A 611.31-611.33 1.81E-04-9.63E-04 5.72-7.38 E2/E3
衰减值、峰值黏度 BD、PV Kukri_c17417_407 4A 688.10 1.53E-10-8.92E-04 5.55-22.21 E1/E2/E3
最终黏度、回生值、低谷黏度 FV、SB、TV RAC875_c10859_229 4B 615.56 1.60E-04-9.29E-04 5.68-8.00 E2/E3
峰值黏度、低谷黏度 PV、TV RAC875_c13093_86 7A 675.40-678.58 1.76E-04-9.07E-04 5.73-7.44 E2/E3

Fig. 3

Haplotype analysis of the Kukri_c17417_407 locus A: LD Block analysis of the Kukri_c17417_407 locus; B: Quality phenotypic differences of different haplotype varieties (lines)"

Table 4

Phenotype in combination with the statistical analysis of haploid type"

单倍型
Haplotypes
等位基因
Alleles
份数
Numbers
频率
Frequency (%)
Hap1 CAA 131 66.84
Hap2 CCG 19 9.70
Hap3 TAA 33 16.84
Hap4 CAG 13 6.63

Fig. 4

Distribution frequencies of haplotypes at the Kukri_c17417_407 locus in winter wheat from different sources"

Table 5

The obtained candidate gene information was screened"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position
基因
Gene
基因注释或编码蛋白
Gene annotation or coding prtein
回生值 SB Jagger_c4026_328 2A 711.64-718.22 TraesCS2A01G478500 β-葡萄糖苷酶
Beta-glucosidase
最终黏度、回生值、峰值时间、
低谷黏度 FV、SB、PT、TV
CAP8_c5161_541 2A 731.16 TraesCS2A01G502400 质膜ATP酶
Plasma membrane ATPase
最终黏度、回生值、峰值黏度、
低谷黏度 FV、SB、PV、TV
Excalibur_rep_c70961_190 3A 154.03 TraesCS3A01G157200 泛素结合酶E2
Ubiquitin-conjugating enzyme E2
衰减值、峰值黏度 BD、PV Kukri_c17417_407 4A 688.10 TraesCS4A01G418100 琥珀酸脱氢酶亚基5
Succinate dehydrogenase subunit 5
衰减值BD CAP8_c5161_541 1B 22.16 TraesCS1B01G042600 Dirigent蛋白质
Dirigent protein
峰值黏度PV BS00014695_51 3B 636.45 TraesCS3B03G1002600 PF00686:淀粉结合域
PF00686: Starch binding domain
最终黏度、回生值、低谷黏度
FV、SB、TV
BS00106143_51 4B 604.20 TraesCS4B01G314900 泛素结合酶E2
Ubiquitin-conjugating enzyme E2
最终黏度、回生值、低谷黏度
FV、SB、TV
RAC875_c40444_84 4B 615.56 TraesCS4B01G324500 钙结合EF-Hand蛋白
Calcium-binding EF hand-containing protein
衰减值 BD BS00065936_51 5B 571.64 TraesCS5B03G0980400 PF00646:F-box域
PF00646: F-box domain
峰值黏度 PV Excalibur_c39830_862 6B 24.92-30.89 TraesCS6B01G040800 F-box家族蛋白
F-box family protein
最终黏度、回生值、峰值时间、
低谷黏度 FV、SB、PT、TV
wsnp_Ex_c4815_8597139 6B 24.92-30.89 TraesCS6B01G050700 羧肽酶
Carboxypeptidase
[1]
郑学玲, 尚加英, 张杰. 面粉糊化特性与面条品质关系的研究. 河南工业大学学报(自然科学版), 2010, 31(6): 1-5.
ZHENG X L, SHANG J Y, ZHANG J. Relationship between gelatinization properties of wheat flour and noodle quality. Journal of Henan University of Technology (Natural Science Edition), 2010, 31(6): 1-5. (in Chinese)
[2]
黄婷, 汪鑫. 小麦品种面粉黏度性状的品质分析. 种子, 2008, 27(1): 73-76.
HUANG T, WANG X. Analysis of quality of flour viscosity trait in wheat. Seed, 2008, 27(1): 73-76. (in Chinese)
[3]
黎媛. 面粉品质参数对面制品品质的影响研究. 生物技术世界, 2014, 11(3): 50.
LI Y. Study on the influence of flour quality parameters on the quality of flour product. Biotech World, 2014, 11(3): 50. (in Chinese)
[4]
王海萍, 师凤华, 唐朝晖, 刘少翔, 张兰萍, 逯成芳, 刘广田. 山西小麦淀粉特性分析. 山西农业科学, 2007, 35(2): 31-33.
WANG H P, SHI F H, TANG Z H, LIU S X, ZHANG L P, LU C F, LIU G T. Analysis of starch properties in Shanxi wheat. Journal of Shanxi Agricultural Sciences, 2007, 35(2): 31-33. (in Chinese)
[5]
姚大年, 李保云, 梁荣奇, 刘广田. 小麦品种面粉黏度性状及其在面条品质评价中的作用. 中国农业大学学报, 2000, 5(3): 25-29.
YAO D N, LI B Y, LIANG R Q, LIU G T. Effects of flour viscosity traits in evaluating wheat varieties for their noodle quality. Journal of China Agricultural University, 2000, 5(3): 25-29. (in Chinese)
[6]
姚大年, 李保云, 梁荣奇, 刘广田. 基因型和环境对小麦品种淀粉性状及面条品质的影响. 中国农业大学学报, 2000, 5(1): 63-68.
YAO D N, LI B Y, LIANG R Q, LIU G T. Effects of wheat genotypes and environments to starch properties and noodle quality. Journal of China Agricultural University, 2000, 5(1): 63-68. (in Chinese)
[7]
PANOZZO J F, MCCORMICK K M. The rapid viscoanalyser as a method of testing for noodle quality in a wheat breeding programme. Journal of Cereal Science, 1993, 17(1): 25-32.
[8]
BATEY I L, HAYDEN M J, CAI S, SHARP P J, CORNISH G B, MORELL M K, APPELS R. Genetic mapping of commercially significant starch characteristics in wheat crosses. Australian Journal of Agricultural Research, 2001, 52(12): 1287.
[9]
吴云鹏, 张业伦, 肖永贵, 阎俊, 张勇, 张晓科, 张利民, 夏先春, 何中虎. 小麦重要品质性状的QTL定位. 中国农业科学, 2008, 41(2): 331-339. doi: 10.3864/j.issn.0578-1752.2008.02.003.
WU Y P, ZHANG Y L, XIAO Y G, YAN J, ZHANG Y, ZHANG X K, ZHANG L M, XIA X C, HE Z H. QTL mapping for important quality traits in common wheat. Scientia Agricultura Sinica, 2008, 41(2): 331-339. doi: 10.3864/j.issn.0578-1752.2008.02.003. (in Chinese)
[10]
于海霞, 肖静, 田纪春. 小麦面粉色泽(白度)与DArT标记的关联分析. 作物学报, 2014, 40(12): 2198-2202.

doi: 10.3724/SP.J.1006.2014.02198
YU H X, XIAO J, TIAN J C. Genome-wide association analysis of flour color (whiteness) using DArT markers in common wheat. Acta Agronomica Sinica, 2014, 40(12): 2198-2202. (in Chinese)
[11]
ZHAO J L, CHEN M S, MA Y M, LI R J, REN Y P, SUN Q Q, LI S S. QTL mapping for quality traits of Chinese dry noodle. Agricultural Sciences in China, 2009, 8(4): 394-400.
[12]
DENG Z Y, TIAN J C, CHEN F, LI W J, ZHENG F F, CHEN J S, SHI C L, SUN C L, WANG S Y, ZHANG Y X. Genetic dissection on wheat flour quality traits in two related populations. Euphytica, 2015, 203(1): 221-235.
[13]
MCCARTNEY C A, SOMERS D J, LUKOW O, AMES N, NOLL J, CLOUTIER S, HUMPHREYS D G, MCCALLUM B D. QTL analysis of quality traits in the spring wheat cross RL4452×’AC Domain’. Plant Breeding, 2006, 125(6): 565-575.
[14]
ZHANG Y L, WU Y P, XIAO Y G, YAN J, ZHANG Y, ZHANG Y, MA C X, XIA X C, HE Z H. QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft × hard wheat cross. Crop and Pasture Science, 2009, 60(6): 587.
[15]
PU Z E, YE X L, LI Y, SHI B X, GUO Z, DAI S F, MA J, LIU Z H, JIANG Y F, LI W, JIANG Q T, CHEN G Y, WEI Y M, ZHENG Y L. Identification and validation of novel loci associated with wheat quality through a genome-wide association study. Journal of Integrative Agriculture, 2022, 21(11): 3131-3147.
[16]
MATUS I A, HAYES P M. Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 2002, 45(6): 1095-1106.

pmid: 12502254
[17]
RAM S, SHARMA I. Allelic diversity in granule bound starch synthase genes in Indian wheats and their relationship with starch pasting properties. Cereal Research Communications, 2013, 41(1): 141-149.
[18]
HE Z H, XU Z H, XIA L Q, XIA X C, YAN J, ZHANG Y, CHEN X M. Genetic variation for waxy proteins and starch properties in Chinese winter wheats. Cereal Research Communications, 2006, 34(2): 1145-1151.
[19]
MUHU-DIN AHMED, H G, SAJJAD M, ZENG Y W, IQBAL M, HABIBULLAH KHAN S, ULLAH A, NADEEM AKHTAR M. Genome-wide association mapping through 90K SNP array for quality and yield attributes in bread wheat against water-deficit conditions. Agriculture, 2020, 10(9): 392.
[20]
项丰娟, 苏磊, 张秀南, 秦仁炳, 曾洁, 李光磊. 小麦淀粉的研究现状. 食品研究与开发, 2021, 42(16): 212-219.
XIANG F J, SU L, ZHANG X N, QIN R B, ZENG J, LI G L. Research status of wheat starch. Food Research and Development, 2021, 42(16): 212-219. (in Chinese)
[21]
徐兆华, 张艳, 夏兰芹, 夏先春, 何中虎. 中国冬播小麦品种淀粉特性的遗传变异分析. 作物学报, 2005, 31(5): 587-591.
XU Z H, ZHANG Y, XIA L Q, XIA X C, HE Z H. Genetic variation of starch properties in Chinese winter wheats. Acta Agronomica Sinica, 2005, 31(5): 587-591. (in Chinese)
[22]
TIAN Y S, SANG W, LIU P P, LIU J D, XIANG J S, CUI F J, XU H J, HAN X N, NIE Y B, KONG D Z, LI W H, MU P Y. Genome-wide association study for starch pasting properties in Chinese spring wheat. Frontiers in Genetics, 2022, 13: 830644.
[23]
马冬云, 郭天财, 王晨阳, 朱云集, 王化岑. 不同麦区小麦品种子粒淀粉糊化特性分析. 华北农学报, 2004, 19(4): 59-61.
MA D Y, GUO T C, WANG C Y, ZHU Y J, WANG H C. Investigation on starch pasting properties of winter wheat in different sites. Acta Agriculturae Boreali-Sinica, 2004, 19(4): 59-61. (in Chinese)

doi: 10.3321/j.issn:1000-7091.2004.04.016
[24]
刘春雷, 杨雪, 王丁, 张丽琴, 王世杰. 小麦淀粉糊化特性的配合力分析. 江苏农业科学, 2017, 45(15): 77-79.
LIU C L, YANG X, WANG D, ZHANG L Q, WANG S J. Combining ability analysis of gelatinization characteristics of wheat starch. Jiangsu Agricultural Sciences, 2017, 45(15): 77-79. (in Chinese)
[25]
胡文静, 张晓, 刘巧, 方正武, 高德荣. 普通小麦籽粒硬度的全基因组关联分析. 麦类作物学报, 2021, 41(2): 157-163.
HU W J, ZHANG X, LIU Q, FANG Z W, GAO D R. Genome-wide association study of grain hardness in common wheat. Journal of Triticeae Crops, 2021, 41(2): 157-163. (in Chinese)
[26]
LOU H Y, ZHANG R Q, LIU Y T, GUO D D, ZHAI S S, CHEN A Y, ZHANG Y F, XIE C J, YOU M S, PENG H R, LIANG R Q, NI Z F, SUN Q X, LI B Y. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theoretical and Applied Genetics, 2021, 134(1): 399-418.
[27]
于海霞, 田纪春. 小麦淀粉糊化特性与DArT标记的关联分析. 作物学报, 2012, 38(11): 1997-2006.

doi: 10.3724/SP.J.1006.2012.01997
YU H X, TIAN J C. Association between starch pasting properties and DArT markers in common wheat. Acta Agronomica Sinica, 2012, 38(11): 1997-2006. (in Chinese)
[28]
SUN H Y, J H, FAN Y D, ZHAO Y, KONG F M, LI R J, WANG H G, LI S S. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Progress in Natural Science, 2008, 18(7): 825-831.
[29]
邹林翰, 周新颖, 张泽源, 蔚睿, 袁梦, 宋晓朋, 简俊涛, 张传量, 韩德俊, 宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析. 中国农业科学, 2022, 55(18): 3473-3483. doi: 10.3864/j.issn.0578-1752.2022.18.001.
ZOU L H, ZHOU X Y, ZHANG Z Y, WEI R, YUAN M, SONG X P, JIAN J T, ZHANG C L, HAN D J, SONG Q H. QTL mapping of thousand-grain-weight and its related traits in Zhou 8425B×Xiaoyan 81 population and haplotype analysis. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483. doi: 10.3864/j.issn.0578-1752.2022.18.001. (in Chinese)
[30]
陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1 单倍型分析. 植物遗传资源学报, 2021, 22(6): 1698-1707.

doi: 10.13430/j.cnki.jpgr. 20210419003
CHEN L L, LIU T X, GU Y Z, SONG J, WANG J, QIU L J. Haplotype analysis of petiole angle related gene GmILPA1in soybean. Journal of Plant Genetic Resources, 2021, 22(6): 1698-1707. (in Chinese)
[31]
刘建军, 何中虎, 杨金, 徐兆华, 刘爱峰, 赵振东. 小麦品种淀粉特性变异及其与面条品质关系的研究. 中国农业科学, 2003, 36(1): 7-12. doi: 10.3864/j.issn.0578-1752.030102.
LIU J J, HE Z H, YANG J, XU Z H, LIU A F, ZHAO Z D. Variation of starch properties in wheat cultivars and their relationship with dry white Chinese noodle quality. Scientia Agricultura Sinica, 2003, 36(1): 7-12. doi: 10.3864/j.issn.0578-1752.030102. (in Chinese)
[32]
ZHANG N, ZHANG L R, SHI C N, TIAN Q Z, LV G G, WANG Y, CUI D Q, CHEN F. Comprehensive profiling of lysine ubiquitome reveals diverse functions of lysine ubiquitination in common wheat. Scientific Reports, 2017, 7(1): 13601.
[33]
JANEČEK Š, MAREČEK F, MACGREGOR E A, SVENSSON B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnology Advances, 2019, 37(8): 107451.
[34]
王霞, 庞劲松, 亓宝, 胡兰娟, 袁慧. 人工合成异源六倍体小麦β-葡萄糖苷酶活性的变化. 安徽农业科学, 2009, 37(34): 17244-17245, 17248.
WANG X, PANG J S, QI B, HU L J, YUAN H. Changes of β-glucosidase activity in synthetic hexaploid wheat. Journal of Anhui Agricultural Sciences, 2009, 37(34): 17244-17245, 17248. (in Chinese)
[35]
UMETSU H, MATSUOKA H, ICHISHIMA E. Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. Journal of Agricultural and Food Chemistry, 1983, 31(1): 50-53.
[36]
王育华, 邹杰, 陈信波. 植物丝氨酸羧肽酶及其类蛋白的研究进展. 生物学杂志, 2010, 27(6): 72-75, 102.
WANG Y H, ZOU J, CHEN X B. Research progress of plant SCP and SCPL proteins. Journal of Biology, 2010, 27(6): 72-75, 102. (in Chinese)
[37]
MA Q H, LIU Y C. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Molecular Biology Reporter, 2015, 33(1): 143-152.
[38]
周思婕, 张敏, 王平. 植物质膜H+-ATP酶对环境胁迫因子的响应研究进展. 应用与环境生物学报, 2021, 27(2): 485-494.
ZHOU S J, ZHANG M, WANG P. Research progress on plant membrane H+ -ATPase to environmental stress factors: A review. Chinese Journal of Applied and Environmental Biology, 2021, 27(2): 485-494. (in Chinese)
[39]
MOHANTA T K, MOHANTA N, MOHANTA Y K, BAE H H. Genome-wide identification of calcium dependent protein kinase gene family in plant lineage shows presence of novel D-×-D and D-E-L motifs in EF-hand domain. Frontiers in Plant Science, 2015, 6: 1146.
[40]
XU C, LI M X, ZHOU Z H, LI J S, CHEN D M, DUAN Y B, ZHOU M G. Impact of five succinate dehydrogenase inhibitors on DON biosynthesis of Fusarium asiaticum, causing Fusarium head blight in wheat. Toxins, 2019, 11(5): 272.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[3] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[4] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[5] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[6] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[7] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[8] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[9] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[10] GUO Jun, SHAO Dan, DOU TaoCun, MA Meng, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing, QU Liang. Random Regression Analysis on Residual Feed Intake in Laying Hens with and Identification of the Genetic Markers [J]. Scientia Agricultura Sinica, 2024, 57(22): 4568-4577.
[11] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[12] GUO Jun, QU Liang, SHAO Dan, MA Meng, DOU TaoCun, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing. Dissecting the Genetic Architecture of Yolk Ratio with Single-Step Genome-Wide Association Study [J]. Scientia Agricultura Sinica, 2024, 57(21): 4356-4366.
[13] MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729.
[14] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[15] CHEN Shi, HUANG YinLan, JIN YunXiang, XU ChengLin, ZOU JinQiu. Agricultural Climatic Factors and Their Thresholds for Winter Wheat Cultivation in Northern China [J]. Scientia Agricultura Sinica, 2024, 57(16): 3142-3153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!