Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1930-1942.doi: 10.3864/j.issn.0578-1752.2024.10.007

• PLANT PROTECTION • Previous Articles     Next Articles

Function and Mechanism Analysis of Vm-milRN7 Regulating the Pathogenicity of Valsa mali

ZHANG Jian(), ZHAO BinSen, FENG Hao(), HUANG LiLi()   

  1. College of Plant Protection, Northwest A&F University/State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Yangling 712100, Shaanxi
  • Received:2023-12-18 Accepted:2024-02-16 Online:2024-05-16 Published:2024-05-23
  • Contact: FENG Hao, HUANG LiLi

Abstract:

【Background】MicroRNA-like RNAs (milRNAs) are a class of regulatory factors commonly found in fungi with similar generation and action mechanism as plant and animal microRNAs, which are widely involved in their growth and development, as well as in life activities such as infection and pathogenesis of plant pathogenic fungi. The apple Valsa canker caused by Valsa mali is the most destructive disease affecting apple production.【Objective】 The research aims to explore the function and mechanism of Vm-milRN7 in regulating the pathogenicity of V. mali, and to provide a theoretical basis for targeted disease resistance breeding of apple Valsa canker.【Method】 Vm-milRN7 precursor overexpression vector was constructed by amplifying Vm-milRN7 precursor sequence using genomic DNA of strain 03-8 as a template; upstream and downstream sequences of Vm-milRN7 precursor were amplified and Vm-milRN7 precursor knockout mutants were constructed by using Double-joint PCR technique. The Vm-milRN7 precursor overexpression strains and knockout mutants were constructed by PEG-mediated protoplast transformation. The vegetative growth rate of Vm-milRN7 precursor overexpression strains and knockout mutants was determined by cultivation on PDA medium, and the pathogenicity of these strains was verified by inoculation on apple twigs and leaves. The regulatory relationship between Vm-milRN7 and its potential target gene Vm-09496 was identified by qRT-PCR and co-infiltration experiment in Nicotiana benthamiana leaves; protein sequence characterization and phylogenetic analysis of Vm-09496 were performed using bioinformatics software. In order to analyze its function, Vm-09496 knockout mutants and complement strains were created and their phenotypes were characterized.【Result】 PEG-mediated genetic transformation was used to create Vm-milRN7 overexpression strains and knockout mutants. Vm-milRN7 overexpression strains showed no apparent alteration in vegetative growth rate compared with that of the wild-type strains, whereas the knockout mutants had a significantly lower vegetative growth rate. Compared with the wild-type strains, the overexpression strains showed a significant increase in the pathogenicity of V. mali on apple leaves, while the knockout mutants showed a significant decrease in the pathogenicity of V. mali on apple leaves and twigs. Further, qRT-PCR and co-infiltration in N. benthamiana leaves assay showed that Vm-milRN7 inhibited the expression of its potential target gene Vm-09496. Bioinformatics analysis revealed that the gene encodes an imaginary protein and is evolutionarily most closely related to VP1G_09956 in V. pyri. In order to analyze its function, the Vm-09496 knockout mutants and complement strains were created, and the pathogenicity of the knockout mutants on both twigs and leaves was significantly increased compared with that of the wild-type strain, while the vegetative growth rate and pathogenicity of the complement strains recovered to the wild-type level.【Conclusion】 Vm-milRN7 may be involved in the pathogenity of V. mali by regulating the expression of the target gene Vm-09496. The target gene Vm-09496 is an important endogenous gene affecting V. mali infection and negatively regulates V. mali pathogenicity.

Key words: Valsa mali, milRNA, knockout mutant, pathogenicity, post-transcriptional regulation

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5′-3′)
Vm-milRN7OE-F GTAGGAACCCAATCTTCAAATTCGTCTCCAAGCA
Vm-milRN7OE-R TGAATGTTGAGTGGAATGATAGCAGTTCCAATTC
Vm-milRN7-1F GACCGTATCGGTATCACCTAACG
Vm-milRN7-2R CAGATACGGCAGAGAAATCGCAACCTCACAGCAAATCTCACGACCACTTC
Vm-milRN7-3F GTTTAGATTCCAAGTGTCTACTGCTGGCCAGGATCGACAGACTGAACAGAA
Vm-milRN7-4R CTAGAGGAATAACGAGGAACGGA
Vm-milRN7-5F CCGCCCAAGTATTTCCGACC
Vm-milRN7-6R AAACCTCTCCGCCGCCTAGA
Vm-milRN7-7F AGTGGAGGCATAGCAATCAATT
Vm-milRN7-8R TTCAACAGGTCCAAGGTTTAGG
Vm-09496-1F CTGCTTGGCATGTTCCCTTAC
Vm-09496-2R CAGATACGGCAGAGAAATCGCAACCTCCCCGCTTTGCTTACTTTGTGT
Vm-09496-3F GTTTAGATTCCAAGTGTCTACTGCTGGCGGACCACATCACTACCTACTCG
Vm-09496-4R TATTGCTCTATCCTGGCTTTCT
Vm-09496-5F CCGATACCGACAGCCTTTACTT
Vm-09496-6R GCTCATGGTCTGAATCTCCACC
Vm-09496-7F TTTGGTGCCACTGTCGTCTATC
Vm-09496-8R AACGGGCTTCTCAATCTCATGT
HB-Vm-09496-F TCTCATCACCATCACCATCACCAGGATTGAAGGTCCCGGTGCG
HB-Vm-09496-R TCGCCCTTGCTCACCCTCGAGGGAAGGGCTTTTTTCATTAGCAGCACA
Pri-N7-F CATTTCATTTGGAGAGGACCATGACACAGTGAAGTGGTCGTGAGATT
Pri-N7-R TCTAGTTCATCTAGAGGATCAAGCAGTTCCAATTCGATGTATTC
Tar-Vm-09496-F CATTTCATTTGGAGAGGACCATGTTCCGCCTCGACTCCCGCCACGTCG
Tar-Vm-09496-R GTTGTGTTGAGAATTCTCGAGGCGGTGCCGAACTCCTGGGCCCCT
RT-Vm-milRN7 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTAAATC
qRT-Vm09496-F TTGTGTTTGGTCTGGTGTTGC
qRT-Vm09496-R CGAGTCTGATTCCGTTTTCGT
G850-F TCGGCTATGACTGGGCACAACA
G852-R GAGCGGCGATACCGTAAAGCAC
G855-R TGTTGGGTTTGAGCTAGGTGGGGTGA
G856-F GAATGGTCAAATCAAACTGCTAGATAT
RT-VmU6 GCTTTCTTTGGTATAGCGTGTCA
VmU6-F GGTCAATTTGAAACAATACAGAGAAGAT
VmU6-R TCTTTGGTATAGCGTGTCATCCTTAG

Fig. 1

Diagram of strategy of generation target gene/sequence deletion constructs"

Fig. 2

Identification of Vm-milRN7 overexpression strains (A) and knockout mutants (B)"

Fig. 3

Phenotype determination of Vm-milRN7 overexpression and WT strains"

Fig. 4

Phenotype determination of Vm-milRN7 knockout mutants and WT strains"

Fig. 5

Protein sequence analysis of the target gene Vm-09496"

Fig. 6

Detection of Vm-09496 expression level in WT, Vm-milRN7 overexpression strains and knockout mutants"

Fig. 7

Analysis about the regulation relationship between Vm-milRN7 and Vm-09496 by co-infiltration in N. benthamiana leaves"

Fig. 8

Identification of Vm-09496 knockout mutants"

Fig. 9

Identification of the gene complement strains of HB-Vm-09496"

Fig. 10

Vegetative growth rates of WT, Vm-09496 knockout mutants and complement strains"

Fig. 11

Pathogenicity of WT, Vm-09496 knockout mutants, and complement strains on leaves and twigs"

[1]
WANG X, WEI J, HUANG L, KANG Z. Re-evaluation of pathogens causing Valsa canker on apple in China. Mycologia, 2011, 103(2): 317-324.
[2]
FENG H, WANG C L, HE Y T, TANG L, HAN P L, LIANG J H, HUANG L L. Apple Valsa canker: Insights into pathogenesis and disease control. Phytopathology Research, 2023, 5: 45.
[3]
李世东. 植物医学: 我国农业现代化进程中的病害治理挑战、机遇和创新. 植物保护, 2022, 48(2): 1-8, 15.
LI S D. Phytomedicine: Challenges, opportunities and innovation in management of plant diseases for sustainable agricultural development in China. Plant Protection, 2022, 48(2): 1-8, 15. (in Chinese)
[4]
BARTEL D P. Metazoan microRNAs. Cell, 2018, 173(1): 20-51.

doi: S0092-8674(18)30286-1 pmid: 29570994
[5]
LU T X, ROTHENBERG M E. MicroRNA. Journal of Allergy and Clinical Immunology, 2018, 141(4): 1202-1207.
[6]
吕士凯, 马小龙, 张敏, 邓平川, 陈春环, 张宏, 刘新伦, 吉万全. 小麦TaNAC基因基于可变剪切和micro RNA的转录后调控分析. 中国农业科学, 2021, 54(22): 4709-4727. doi: 10.3864/j.issn.0578-1752.2021.22.001.
S K, MA X L, ZHANG M, DENG P C, CHEN C H, ZHANG H, LIU X L, JI W Q. Post-transcriptional regulation of TaNAC genes by alternative splicing and microRNA in common wheat (Triticum aestivum L.). Scientia Agricultura Sinica, 2021, 54(22): 4709-4727. doi: 10.3864/j.issn.0578-1752.2021.22.001. (in Chinese)
[7]
LEE H C, LI L D, GU W F, XUE Z H, CROSTHWAITE S K, PERTSEMLIDIS A, LEWIS Z A, FREITAG M, SELKER E U, MELLO C C, LIU Y. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Molecular Cell, 2010, 38(6): 803-814.
[8]
CRESPO-SALVADOR Ó, SÁNCHEZ-GIMÉNEZ L, LÓPEZ-GALIANO M J, FERNÁNDEZ-CRESPO E, SCHALSCHI L, GARCÍA-ROBLES I, RAUSELL C, REAL M D, GONZÁLEZ-BOSCH C. The histone marks signature in exonic and intronic regions is relevant in early response of tomato genes to Botrytis cinerea and in miRNA regulation. Plants, 2020, 9(3): 300.
[9]
JIN Y, ZHAO J H, ZHAO P, ZHANG T, WANG S, GUO H S. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2019, 374(1767): 20180309.
[10]
WANG B, SUN Y F, SONG N, ZHAO M X, LIU R, FENG H, WANG X J, KANG Z S. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. The New Phytologist, 2017, 215(1): 338-350.
[11]
LI M H, XIE L F, WANG M, LIN Y L, ZHONG J Q, ZHANG Y, ZENG J, KONG G H, XI P G, LI H P, MA L J, JIANG Z D. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathogens, 2022, 18(5): e1010157.
[12]
ZHANG X, BAO Y L, SHAN D Q, WANG Z H, SONG X N, WANG Z Y, WANG J S, HE L Q, WU L, ZHANG Z G, NIU D D, JIN H L, ZHAO H W. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiology, 2018, 177(1): 352-368.
[13]
JI H M, MAO H Y, LI S J, FENG T, ZHANG Z Y, CHENG L, LUO S J, BORKOVICH K A, OUYANG S Q. Fol-milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by impairing host immune responses. The New Phytologist, 2021, 232(2): 705-718.
[14]
XU M, GUO Y, TIAN R Z, GAO C, GUO F R, VOEGELE R T, BAO J Y, LI C J, JIA C H, FENG H, HUANG L L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. The New Phytologist, 2020, 227(3): 899-913.
[15]
XU M, LI G Y, GUO Y, GAO Y Q, ZHU L H, LIU Z Y, TIAN R Z, GAO C, HAN P L, WANG N, GUO F R, BAO J Y, JIA C H, FENG H, HUANG L L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. The New Phytologist, 2022, 233(6): 2503-2519.
[16]
赵彬森, 高承宇, 张健, 冯浩, 黄丽丽. Vm-milR21调控苹果黑腐皮壳侵染致病的功能和机理. 微生物学报, 2023, 63(12): 4738-4751.
ZHAO B S, GAO C Y, ZHANG J, FENG H, HUANG L L. Function and mechanism study of Vm-milR21 in the infection of apple tree Valsa canker pathogen. Acta Microbiologica Sinica, 2023, 63(12): 4738-4751. (in Chinese)
[17]
FENG H, XU M, GAO Y Q, LIANG J H, GUO F R, GUO Y, HUANG L L. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. Molecular Plant Pathology, 2021, 22: 243-254.
[18]
GAO C Y, ZHAO B S, ZHANG J, DU X, WANG J, GUO Y, HE Y T, FENG H, HUANG L L. Adaptive regulation of miRNAs/milRNAs in tissue specific interaction between apple and Valsa mali. Horticulture Research, 2024, https://doi.org/10.1093/hr/uhae094.
[19]
高静, 李艳波, 柯希望, 康振生, 黄丽丽. PEG介导的苹果腐烂病菌原生质体转化. 微生物学报, 2011, 51(9): 1194-1199.
GAO J, LI Y B, KE X W, KANG Z S, HUANG L L. Development of genetic transformation system of Valsa mali of apple mediated by PEG. Acta Microbiologica Sinica, 2011, 51(9): 1194-1199. (in Chinese)
[20]
HUANG X, DUAN N, XU H, XIE T N, XUE Y R, LIU C H. CTAB-PEG DNA extraction from fungi with high contents of polysaccharides. Molekuliarnaia Biologiia, 2018, 52(4): 718-726.
[21]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
[22]
韦洁玲, 黄丽丽, 郜佐鹏, 柯希望, 康振生. 苹果树腐烂病室内快速评价方法的研究. 植物病理学报, 2010, 40(1): 14-20.
WEI J L, HUANG L L, GAO Z P, KE X W, KANG Z S. Laboratory evaluation methods of apple Valsa canker disease caused by Valsa ceratosperma sensu Kobayashi. Acta Phytopathologica Sinica, 2010, 40(1): 14-20. (in Chinese)
[23]
DANG Y K, YANG Q Y, XUE Z H, LIU Y. RNA interference in fungi: Pathways, functions, and applications. Eukaryotic Cell, 2011, 10(9): 1148-1155.

doi: 10.1128/EC.05109-11 pmid: 21724934
[24]
WEIBERG A, WANG M, LIN F M, ZHAO H W, ZHANG Z H, KALOSHIAN I, HUANG H D, JIN H L. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342(6154): 118-123.

doi: 10.1126/science.1239705 pmid: 24092744
[25]
WILSON R C, DOUDNA J A. Molecular mechanisms of RNA interference. Annual Review of Biophysics, 2013, 42: 217-239.

doi: 10.1146/annurev-biophys-083012-130404 pmid: 23654304
[26]
QIAO Y L, XIA R, ZHAI J X, HOU Y N, FENG L, ZHAI Y, MA W B. Small RNAs in plant immunity and virulence of filamentous pathogens. Annual Review of Phytopathology, 2021, 59: 265-288.

doi: 10.1146/annurev-phyto-121520-023514 pmid: 34077241
[27]
WANG M, WEIBERG A, DELLOTA E, YAMANE D, JIN H L. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biology, 2017, 14(4): 421-428.
[28]
STRUGALA R, DELVENTHAL R, SCHAFFRATH U. An organ-specific view on non-host resistance. Frontiers in Plant Science, 2015, 6: 526.

doi: 10.3389/fpls.2015.00526 pmid: 26257747
[29]
WANG Q, VERA BUXA S, FURCH A, FRIEDT W, GOTTWALD S. Insights into Triticum aestivum seedling root rot caused by Fusarium graminearum. Molecular Plant-Microbe Interactions, 2015, 28(12): 1288-1303.
[30]
JANSEN M, SLUSARENKO A J, SCHAFFRATH U. Competence of roots for race-specific resistance and the induction of acquired resistance against Magnaporthe oryzae. Molecular Plant Pathology, 2006, 7(3): 191-195.
[1] DONG ZaiFang, DING TengTeng, SHAN YiXuan, LI HongLian, CHEN LinLin, XING XiaoPing. Autophagy-Related Gene FpAtg3 Involves in Growth and Pathogenicity of Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2024, 57(6): 1080-1090.
[2] WANG Yuan, DU MengDan, LI ZhengGang, SHE XiaoMan, YU Lin, LAN GuoBing, DING ShanWen, HE ZiFu, TANG YaFei. Identification of Pathogen Causing Tomato White Tip and Curl Leaf Disease and Its Pathogenicity in Guangdong Province [J]. Scientia Agricultura Sinica, 2024, 57(12): 2350-2363.
[3] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[4] GONG AnDong, LEI YinYu, WU NanNan, LIU JingRong, SONG MengGe, ZHANG YiMei, YANG Guang, YANG Peng. The Effect of 3-Oxyacyl ACP Reductase Gene FgOAR1 on the Growth, Development and Pathogenicity of Fusarium graminearum [J]. Scientia Agricultura Sinica, 2023, 56(24): 4854-4865.
[5] LI HuiXin, SONG WenPing, HAN ZongXi, LIU ShengWang. Isolation and Pathogenicity of Fowl Adenovirus Serotype 8a Strain [J]. Scientia Agricultura Sinica, 2023, 56(16): 3226-3236.
[6] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[7] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[8] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[9] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[10] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[11] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[12] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[13] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[14] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[15] WANG ChengLi,YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi. Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(16): 3440-3450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!