Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (10): 1848-1858.doi: 10.3864/j.issn.0578-1752.2023.10.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Phytochlorin Iron on Stress Tolerance to Waterlogging in Wheat

CHU YanMeng(), MAO YingChao, CAI Jian, ZHOU Qin, DAI TingBo, WANG Xiao(), JIANG Dong   

  1. College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Physiology, Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing 210095
  • Received:2022-08-24 Accepted:2023-01-09 Online:2023-05-16 Published:2023-05-17

Abstract:

【Objective】Waterlogging stress is one of the main limiting factors for wheat production, especially in the middle and lower reaches of the Yangtze River in China. Improving the waterlogging tolerance of wheat is an important goal to achieve stable and increased yield in this region. In this study, by exploring the suitable use period and concentration of phytochlorin iron, its role in improving waterlogging stress tolerance was further evaluated mainly from the perspectives of plant photosynthesis and plant antioxidant capacity. The research results could provide the theoretical and technical support for waterlogging-resistant cultivation of wheat.【Method】Using Yangmai 16 as material, three concentrations (0.0875, 0.126, and 0.194 mmol·L-1) of phytochlorin iron were set at anthesis and grain filling stages to screen the appropriate period and concentration for achieving a significant increase in wheat yield. Based on this, the effect of phytochlorin iron on wheat tolerance to waterlogging stress at anthesis stage was further evaluated.【Result】Compared with control, treatment with a concentration of 0.126 mmol·L-1 phytochlorin iron at anthesis stage (A2) could significantly increase wheat grain yield by increasing the grain weight. Waterlogging stress at anthesis stage significantly reduced the chlorophyll content, net photosynthesis rate, and post-flowering dry matter accumulation and translocation to grain, resulting in grain yield reduction. However, compared with non-spraying treatment, AW2 treatment showed a higher photosynthetic pigment content, photosystem II stability, net photosynthetic rate. Meantime, the raised activities of antioxidant enzymes, reduced O2- production rate and H2O2 content, which showed correspondence with the reduced accumulation of malondialdehyde content, thus alleviated the damage of cell membrane lipid peroxidation and the yield reduction caused by waterlogging stress.【Conclusion】Spraying a concentration of 0.126 mmol·L-1 phytochlorin iron at anthesis stage could significantly increase wheat yield. Phytochlorin iron could alleviate the plant senescence, reduce damage to PSII, enhance the activity of antioxidant enzymes, reduce the damage of cell membrane lipid peroxidation, maintain higher photosynthetic rate, reduce the degree of yield reduction, and enhance wheat tolerance to waterlogging stress.

Key words: wheat, waterlogging stress, phytochlorin iron, yield, chlorophyll, photosynthesis rate

Table 1

The treatments in experiment I"

处理
Treatment
处理方式
Treatment method
CK 喷施清水 Spray with water
A1 开花期喷施二氢卟吩铁0.0875 mmol·L-1
0.0875 mmol·L-1 phytochlorin iron at anthesis stage
A2 开花期喷施二氢卟吩铁0.126 mmol·L-1
0.126 mmol·L-1 phytochlorin iron at anthesis stage
A3 开花期喷施二氢卟吩铁0.194 mmol·L-1
0.194 mmol·L-1 phytochlorin iron at anthesis stage
G1 灌浆期喷施二氢卟吩铁0.0875 mmol·L-1
0.0875 mmol·L-1 phytochlorin iron at grain filling stage
G2 灌浆期喷施二氢卟吩铁0.126 mmol·L-1
0.126 mmol·L-1 phytochlorin iron at grain filling stage
G3 灌浆期喷施二氢卟吩铁0.194 mmol·L-1
0.194 mmol·L-1 phytochlorin iron at grain filling stage

Table 2

The treatments in experiment II"

处理
Treatment
处理方式
Treatment method
CK 喷施清水 Spray with water
A2 开花期喷施二氢卟吩铁0.126 mmol·L-1
0.126 mmol·L-1 phytochlorin iron at anthesis stage
W 渍水胁迫 Waterlogging stress
AW2 开花期喷施二氢卟吩铁0.126 mmol·L-1+渍水胁迫
0.126 mmol·L-1 phytochlorin iron at anthesis stage+ Waterlogging stress

Table 3

Effect of phytochlorin iron on grain yield and yield components of wheat"

处理 Treatment 穗数 Spikes (×104·hm-2) 穗粒数 Kernels per spike 千粒重 1000-kernel mass (g) 实际产量 Grain yield (kg·hm-2)
CK 339.3a 46.4a 37.0b 5486.9b
A1 351.3a 47.3a 39.2ab 5767.1ab
A2 350.0a 48.4a 41.0a 6022.6a
A3 360.0a 47.9a 37.4b 5886.6a
G1 339.3a 46.8a 37.2b 5733.8ab
G2 359.3a 47.5a 37.0b 5769.3ab
G3 336.0a 47.1a 38.3ab 5818.7a

Table 4

Effect of phytochlorin iron on dry matter accumulation and transport in wheat"

处理 Treatment RAP (mg/stem) REP (%) CTA (%) PAA (mg/stem) CPA (%)
CK 704.7a 22.3a 38.4a 1131.5b 61.6b
A1 618.0b 19.9bc 31.7b 1345.4ab 68.3a
A2 612.2b 22.8a 31.5b 1337.8ab 68.5a
A3 616.3b 19.7c 30.2b 1423.0a 69.8a
G1 654.7ab 21.8abc 32.5b 1360.3a 67.5a
G2 650.5ab 22.2ab 32.6b 1348.0ab 67.4a
G3 640.0ab 22.0abc 31.7b 1381.3a 68.3a

Table 5

Effect of phytochlorin iron on grain yield and yield components of wheat under waterlogging stress at anthesis stage"

处理
Treatment
穗数
Spikes (×104·hm-2)
穗粒数
Kernels per spike
千粒重
1000-kernel mass (g)
实际产量
Grain yield (kg·hm-2)
CK 339.3a 46.4a 37.0b 5486.9b
W 327.3a 46.7a 28.4d 4509.6d
A2 350.0a 48.4a 41.0a 6022.6a
AW2 338.0a 48.1a 30.7c 4890.8c

Table 6

Effect of phytochlorin iron on dry matter accumulation and transport in wheat under waterlogging stress at anthesis stage"

处理 Treatment RAP (mg/stem) REP (%) CTA (%) PAA (mg/stem) CPA (%)
CK 704.7b 22.3c 38.4b 1131.5b 61.6b
W 831.4a 27.3a 48.0a 902.3c 52.0c
A2 612.2c 22.8bc 31.5c 1337.8a 68.5a
AW2 723.4b 24.0b 42.2b 992.0bc 57.8b

Fig. 1

Effect of phytochlorin iron on SPAD at different leaf positions of wheat under waterlogging stress at anthesis stage A: After waterlogging stress for 4 days; B: After waterlogging stress for 10 days. The different letters represent significant difference at P<0.05 level among the treatments in the chart. The same as below"

Fig. 2

Effect of phytochlorin iron on photosynthetic characteristics of wheat flag leaf under waterlogging stress at anthesis stage"

Fig. 3

Effects of phytochlorin iron on fluorescence characteristics of wheat flag leaf under waterlogging stress at anthesis stage"

Fig. 4

Effect of phytochlorin iron on ROS of wheat flag leaf under waterlogging stress at anthesis stage"

Fig. 5

Effect of phytochlorin iron on antioxidant enzymes of wheat flag leaf under waterlogging stress at anthesis stage"

Fig. 6

Correlation analysis of physiological indicators and grain yield of wheat * means significant difference at P<0.05 level among the treatments"

[1]
ANNALISA P, SOFIA C, ANTONELLA L, ANNA B, ROSSELLA N, LAURA D G. ROS production and scavenging under anoxia and re- oxygenation in Arabidopsis cells: A balance between redox signaling and impairment. Frontiers in Plant Science, 2016, 7(1): 1803-1814.
[2]
MIN Y, ZHUQING Z, XIANGYI D, JIWEI L, FANGZHU M, YUANHONG Q. Physiological mechanism of programmed cell death aggravation and acceleration in wheat endosperm cells caused by waterlogging. Acta Physiologiae Plantarum, 2017, 39(1): 23-34.

doi: 10.1007/s11738-016-2324-2
[3]
蔡永萍, 陶汉之, 张玉琼. 土壤渍水对小麦开花后叶片几种生理特性的影响. 植物生理学通讯, 2000, 36(2): 110-113.
CAI Y P, TAO H Z, ZHANG Y Q. The effect of soil waterlogging on several physiological characteristics of wheat leaves after flowering. Plant Physiology Communications, 2000, 36(2): 110-113. (in Chinese)
[4]
范雪梅, 姜东, 戴廷波, 荆奇, 曹卫星. 花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响. 土壤学报, 2005, 42(5): 173-177.
FAN X M, JIANG D, DAI T B, JING Q, CAO W X. Effects of nitrogen supply on flag leaf senescence and grain weight in wheat grown under drought or waterlogging from anthesis to maturity. Acta Pedologica Sinica, 2005, 42(5): 173-177. (in Chinese)
[5]
YAN K, ZHAO S, CUI M, HAN G, WEN P. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiology & Biochemistry, 2018, 125(1): 239-246.
[6]
吴晓丽, 汤永禄, 李朝苏, 吴春, 黄钢. 不同生育时期渍水对冬小麦旗叶叶绿素荧光及籽粒灌浆特性的影响. 中国生态农业学报, 2015, 23(3): 309-318.
WU X L, TANG Y L, LI C S, WU C, HUANG G. Effect of waterlogging at different growth stages on flag leaf chlorophyll fluorescence and grain-filling properties of winter wheat. Chinese Journal of Eco-Agriculture, 2015, 23(3): 309-318. (in Chinese)
[7]
曹阳, 蔡士宾, 方先文, 朱伟. 利用马卡小麦的强耐湿性创造新的耐湿种质. 江苏农业科学, 1998(1): 20-21.
CAO Y, CAI S B, FANG X W, ZHU W. Using the strong moisture tolerance of Tr macha wheat to create new moisture tolerant germplasm. Jiangsu Agricultural Sciences, 1998(1): 20-21. (in Chinese)
[8]
王飞, 彭少兵. 水稻绿色高产栽培技术研究进展. 生命科学, 2018, 30(10): 1129-1136.
WANG F, PENG S B. Research progress on green and high-yield cultivation techniques of rice. Chinese Bulletin of Life Sciences, 2018, 30(10): 1129-1136. (in Chinese)
[9]
NAZIR F, FARIDUDDIN Q, HUSSAIN A. Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato. Ecotoxicology and Environmental Safety, 2020, 207(1): 81-111.
[10]
PANG J, CUINUIN T, SHABALA L. Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiology, 2007, 145(1): 266-276.

pmid: 17660351
[11]
DREW C M, LYNCH M J. Soil anaerobiosis, microorganisms, and root function. Annual Review of Phytopathology, 1980, 18(1): 37-66.

doi: 10.1146/phyto.1980.18.issue-1
[12]
郭丽华, 唐为爱, 李万梅. 0.02%二氢卟吩铁DP调节油菜生长的药效试验. 上海蔬菜, 2016(2): 53-54.
GUO L H, TANG W A, LI W M. Efficacy test of 0.02% phytochlorin iron DP regulating rapeseed growth. Shanghai Vegetables, 2016(2): 53-54. (in Chinese)
[13]
马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究. 作物学报, 2022, 48(1): 151-164.

doi: 10.3724/SP.J.1006.2022.11005
MA B W, LI Q, CAI J, ZHOU Q, HUANG M, DAI T G, WANG X, JIANG D. Study on the physiological mechanism of waterlogging exercise before anthesis regulating waterlogging tolerance of post anthesis wheat. Acta Agronomica Sinica, 2022, 48(1): 151-164. (in Chinese)

doi: 10.3724/SP.J.1006.2022.11005
[14]
丁锦峰, 苏盛楠, 梁鹏, 江孟孟, 郑丽洁, 汪先鹏, 李春燕, 朱新开, 郭文善. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响. 麦类作物学报, 2017, 37(11): 1473-1479.
DING J F, SU S N, LIANG P, JIANG M M, ZHENG L J, WANG X P, LI C Y, ZHU X K, GUO W S. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat. Journal of Triticeae Crops, 2017, 37(11): 1473-1479. (in Chinese)
[15]
GAO J, WANG F, SUN J, TIAN Z, HU H, JIANG S, LUO Q, XU Y, JIANG D, CAO W, DAI T. Enhanced Rubisco activation associated with maintenance of electron transport alleviates inhibition of photosynthesis under low nitrogen conditions in winter wheat seedlings. Journal of Experimental Botany, 2018, 69(22): 5477-5488.

doi: 10.1093/jxb/ery315 pmid: 30239847
[16]
YAKUN C, ZHONGWEI T, XU Z, ABID M, HUIMIN H, DONG J, WEIXING C, TINGBO D. Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 2015, 37(10): 1-10.

doi: 10.1007/s11738-014-1746-y
[17]
TAN W, LIU J, DAI T, JING Q, CAO W, JIANG D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46(1): 21-27.

doi: 10.1007/s11099-008-0005-0
[18]
赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207-210.
ZHAO S J, XU Z C, ZOU Q, MENG Q W. Improvement of method for measurement malondialdehyde in plant tissue. Plant Physiology Communications, 1994, 30(3): 207-210. (in Chinese)
[19]
SHAO G C, LAN J J, YU S E, LIU N, GUO R Q, SHE D L. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. Photosynthetica, 2013, 51(3): 429-437.

doi: 10.1007/s11099-013-0039-9
[20]
李赟, 李霞, 李慕嵘, 杨蕊, 王小燕. 开花期渍水对小麦产量及氮素分配的影响. 麦类作物学报, 2022, 42(6): 1-9.
LI Y, LI X, LI M R, YANG R, WANG X Y. Effects of waterlogging during flowering on wheat yield and nitrogen distribution. Journal of Triticeae Crops, 2022, 42(6): 1-9. (in Chinese)
[21]
XIAO W, MEI H, QIN Z, JIAN C, TINGBO D, WEIXING C, DONG J. Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2016, 132: 175-182.

doi: 10.1016/j.envexpbot.2016.09.003
[22]
李霞, 李赟, 李慕嵘, 尹立俊, 王小燕, 漆栋良. 开花期渍水对土壤不同形态氮素含量及小麦氮素积累运转和产量的影响. 南方农业学报, 2022, 53(7): 1883-1892.
LI X, LI Y, LI M R, YI L J, WANG X Y, QI D L. Effects of waterlogging at anthesis stage on nitrogen content of different forms in soil and nitrogen accumulation and translocation of wheat and yield. Journal of Southern Agriculture, 2022, 53(7): 1883-1892. (in Chinese)
[23]
ARAKI H, HAMADA A, HOSSAIN M A, TAKAHASHI T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 2012, 137(9): 27-36.

doi: 10.1016/j.fcr.2012.09.006
[24]
ROSSI S, BURGESS P, JESPERSEN D, HUANG B R. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differing in heat tolerance. Crop Science, 2017, 57: 169-178.
[25]
LIU L Z, WU J J, ZHOU H K, LI X H, WANG Q F, AN X L, LI R T. Chlorophyll fluorescence and its progress in detecting water stress. Spectroscopy and Spectral Analysis, 2017, 37(9): 2780-2787.
[26]
谭维娜, 戴廷波, 荆奇, 曹卫星, 姜东. 花后渍水对小麦旗叶光合特性及产量的影响. 麦类作物学报, 2007, 27(2): 314-317.
TAN W N, DAI T B, JING Q, CAO W X, JIANG D. Effects of post anthesis waterlogging on photosynthetic characteristics and yield of flag leaves of wheat. Journal of Triticeae Crops, 2007, 27(2): 314-317. (in Chinese)
[27]
WU X L, TANG Y L, LI C S, MCHUGH A D, LI Z, WU C. Individual and combined effects of soil waterlogging and compaction on physiological characteristic of wheat in southwestern China. Field Crops Research, 2018, 215: 163-172.

doi: 10.1016/j.fcr.2017.10.016
[28]
ASADA K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 2006, 141(2): 391-396.

doi: 10.1104/pp.106.082040 pmid: 16760493
[29]
RAPPAPORT F, GUERGOVA-KURAS M, NIXION P J. Kinetics and pathways of charge recombination in photosystem II. Biochemistry, 2002, 41(26): 8518-8527.

pmid: 12081503
[30]
SLESAK I, LIBIK M, KARPINSKA B. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 2007, 54(1): 39-50.

pmid: 17325747
[31]
YAMAUCHI T, WATANABE K, FUKAZAWA A. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany, 2014, 65(1): 261-273.

doi: 10.1093/jxb/ert371 pmid: 24253196
[32]
DE SAN C R P, ABELEDO L G, MIRALLES D J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant & Soil, 2014, 378(12): 265-277.
[33]
ZHANG R, YUE Z, CHEN X. Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings. Plant Growth Regulation, 2022, 97: 429-438.

doi: 10.1007/s10725-021-00705-9
[34]
GUOPING Z, KOJI T, JUN A, SHIGENORI M. Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiologiae Plantarum, 2007, 29(2): 171-176.

doi: 10.1007/s11738-006-0022-1
[35]
DOUPIS G, KAVROULAKIS N, PSARRAS G, PAPADAKIS I. Growth, photosynthetic performance and antioxidative response of ‘Hass’ and ‘Fuerte’ avocado (Persea americana Mill.) plants grown under high soil moisture. Photosynthetica: International Journal for Photosynthesis Research, 2017, 55(4): 655-663.
[36]
RUCHI B, JAI P S. Antioxidative defense system in pigeonpea roots under waterlogging stress. Acta Physiologiae Plantarum, 2012, 34(4): 515-522.

doi: 10.1007/s11738-011-0848-z
[37]
MIRZA H, BHUYAN M H, TAUFIKA I A, KHURSHEDA P, KAMRUN N, JUBAYER A M, MASAYUKI F. Regulation of ascorbate- glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 2019, 8(9): 384-396.

doi: 10.3390/antiox8090384
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[7] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[10] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[11] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[12] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[13] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[14] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[15] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!