Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3198-3206.doi: 10.3864/j.issn.0578-1752.2021.15.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Magnesium Supplies on the Growth and Physiological Characteristics of Oilseed Rape in Seeding Stage

WANG KunJiao(),REN Tao,LU ZhiFeng(),LU JianWei   

  1. College of Resources and Environment, Huazhong Agricultural University/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070
  • Received:2020-10-12 Accepted:2020-11-30 Online:2021-08-01 Published:2021-08-10
  • Contact: ZhiFeng LU E-mail:1196341967@qq.com;zhifenglu@mail.hzau.edu.cn

Abstract:

【Objective】 Revealing the effects of different magnesium (Mg) supplies on the growth of oilseed rape, and providing a theoretical basis for the scientific application of magnesium fertilizer. 【Method】 Hydroponic experiments with 12 contrasting Mg supplies were conducted to evaluate the effects of different Mg supplies on growth, nutrient accumulation, photosynthetic characteristics, assimilate transport, and ion homeostasis of oilseed rape seedlings, and the critical Mg concentration was established, which was suitable for rapeseed growth. 【Result】 With the increasing Mg supplies, the rapeseed shoot biomass initially increased and then peaked at a concentration of 1.0 mmol·L-1, and finally decreased when solution Mg continuous to increase. Here a biomass-based Mg concentration threshold where the relative biomass researched 95% of the maximum biomass was defined. It was indicated that the shoot Mg concentration of 0.4%-0.7% was suitable for rapeseed growth under hydroponic condition. Appropriate Mg nutrient supply promoted the growth of shoot and root of oilseed rape. Mg deficiency significantly decreased the leaf net photosynthesis rate, Rubisco enzyme activity, apparent electron transfer rate and maximum carboxylation rate, etc., and inhibited leaf carbohydrate transport and plant growth. Excessive Mg supply disturbed the potassium (K), calcium (Ca), and Mg balance, which ultimately reduced the leaf K and Ca uptake and limited the growth of oilseed rape. 【Conclusion】 Overall, the proper Mg nutrition increased the synthesis of photoassimilates, promoted the transportation and distribution of carbohydrates, ensured ion homeostasis, and in turn, promoted the growth of oilseed rape and seed yield.

Key words: oilseed rape, Mg nutrition, biomass, assimilate synthesis and transportation, ion homeostasis

Fig. 1

Effects of different magnesium supplies on leaf growth of oilseed rape during seedlings stage"

Fig. 2

Effects of different Mg supplies on shoot and root biomass and Mg concentration of oilseed rape during seedling stage ** indicates that the P value of the fitting equation is less than 0.01, and the validity of the equation is more than 99%"

Table 1

Effect of shoot magnesium concentration on shoot potassium and calcium concentration of oilseed rape during seedling stage"

植株部位
Each part of the plant
镁缺乏
Mg lack
镁适宜
Mg optimum
镁过量
Mg excess
地上部 Shoot 镁浓度 Mgc (%) 0.08±0.01c 0.58±0.01b 0.82±0.03a
钙浓度 Cac (%) 3.38±0.49a 2.94±0.47b 2.63±0.53c
钾浓度 Kc (%) 4.61±0.80a 5.48±0.99a 5.00±0.77a
新叶 NL 镁浓度 Mgc (%) 0.10±0.01c 0.55±0.03b 0.78±0.07a
钙浓度 Cac (%) 3.14±0.16a 2.52±0.08b 2.51±0.05b
钾浓度 Kc (%) 5.56±0.28a 5.08±0.04b 4.47±0.24c
老叶 OL 镁浓度 Mgc (%) 0.06±0.01c 0.66±0.04b 0.97±0.07a
钙浓度 Cac (%) 3.44±0.17b 5.04±0.16a 3.33±0.02b
钾浓度 Kc (%) 4.32±0.25c 7.74±0.28a 6.22±0.36b

Table 2

Effect of Mg on the phenotype of shoot and root of oilseed rape during seedling stage"

表型特征
Phenotype
镁缺乏
Mg lack
0.10
镁适宜
Mg optimum
1.00
根生物量 BMroot (g/plant) 0.11±0.01b 0.33±0.05a
根平均直径 Root avgdiam (mm) 0.58±0.04b 0.78±0.10a
根长 Root length (cm) 877±121b 1121±169a
根尖数 Root tips 627±92b 948±177a
叶面积 LA (cm2) 504±7b 842±12a
地上部生物量 BMshoot (g/plant) 1.51±0.05b 2.19±0.07a

Table 3

Effect of Mg on the phenotype of shoot and root of oilseed rape during seedling stage"

供镁浓度
Magnesium supplies
concentration (mmol·L-1)
表型
Phenotype
叶位Leaf position
1
(下lower)
2 3 4 5 6 7
(上upper)
缺乏Lack
0.10
镁浓度 Mgc (%) 0.13±0.01* 0.16±0.01* 0.16±0.01* 0.24±0.01* 0.28±0.02* 0.33±0.04*
叶面积 LA (cm2) 51±5* 87±3* 91±4* 104±4* 104±5* 66±5*
叶片生物量 BMleaf (g DW/plant) 0.26±0.03 0.28±0.01* 0.30±0.02* 0.29±0.02* 0.25±0.02* 0.14±0.01*
比叶重 LMA (mg·cm-2) 2.8±0.4* 2.9±0.3* 3.2±0.3* 2.8±0.1 2.7±0.1 3.9±0.3
淀粉浓度 Starchc (%) 4.1±0.2* 7.9±0.3* 8.2±0.1* 5.3±0.2* 4.7±0.2* 3.3±0.0*
蔗糖浓度 Sugarc (%) 6.1±0.3* 5.1±0.3* 4.7±0.1* 3.2±0.1* 2.4±0.1* 3.3±0.1*
适宜Optimum
1.00
镁浓度 Mgc (%) 1.30±0.03 1.35±0.05 1.27±0.09 0.98±0.03 1.08±0.04 1.07±0.04 0.93±0.03
叶面积 LA (cm2) 113±12 155±4 160±4 139±5 126±4 93±4 56±2
叶片生物量 BMleaf (g DW/plant) 0.27±0.01 0.32±0.01 0.38±0.01 0.42±0.03 0.33±0.02 0.30±0.02 0.17±0.02
比叶重 LMA (mg·cm-2) 1.5±0.2 1.9±0.1 2.1±0.2 3.1±0.3 3.0±0.2 3.5±0.1 4.9±0.3
淀粉浓度 Starchc (%) 1.5±0.0 2.2±0.1 1.9±0.0 2.5±0.1 2.7±0.1 3.0±0.1 2.1±0.1
蔗糖浓度 Sugarc (%) 3.3±0.1 1.8±0.2 3.2±0.0 7.4±0.1 4.5±0.1 6.4±0.1 11.5±0.6

Table 4

Effect of Mg on leaf physiological and biochemical indexes of oilseed rape during seedling stage"

生理生化指标
Physiological and biochemical indexes
上层叶片 Upper leaf 下层叶片 Lower leaf
镁缺乏 Mg lack 镁适宜Mg optimum 镁缺乏 Mg lack 镁适宜Mg optimum
净光合速率 A (μmol·m-2·s-1) 12.2±1.3b 16.4±1.4a 6.8±1.1b 16.6±1.8a
气孔导度 gs 0.14±0.02a 0.13±0.02a 0.08±0.03b 0.17±0.02a
胞间CO2浓度 Ci 246±8a 189±12b 285±11a 248±8b
叶绿素a含量 Chl a (mg·g-1 FW) 0.10±0.01b 0.76±0.06a 0.09±0.01b 0.49±0.04a
叶绿素b含量 Chl b (mg·g-1 FW) 0.10±0.01b 0.36±0.03a 0.07±0.01b 0.18±0.02a
叶绿素含量 Chl a+b (mg·g-1 FW) 0.20±0.01b 1.12±0.08a 0.16±0.02b 0.67±0.05a
实际光化学量子效率 ΦPSII 0.24±0.02b 0.29±0.02a 0.17±0.02b 0.24±0.02a
表观光合电子传递速率 ETR 122±9b 147±9a 85±9b 123±12a
Rubisco酶活性 Rubisco activity (U·g-1 FW) 228±10b 908±23a 99±6b 298±5a
最大羧化效率 Vcmax 19.66±2.84b 33.03±1.38a 16.20±2.37b 35.76±2.33a
最大电子传递速率 Jmax 18.27±2.72b 41.45±0.96a 16.01±2.20b 38.84±3.43a
[1] GERENDAS J, FUEHRS H. The significance of magnesium for crop quality. Plant Soil, 2013, 368(1/2):101-128.
doi: 10.1007/s11104-012-1555-2
[2] SENBAYRAM M, GRANSEE A, WAHLE V, THIEL H. Role of magnesium fertilisers in agriculture: Plant-soil continuum. Crop and Pasture Science, 2015, 66(12):1219-1229.
doi: 10.1071/CP15104
[3] 王瑞元. 发展木本油料产业是提高我国食用油自给率的重要举措. 粮食与食品工业, 2016, 23(4):1-4.
WANG R Y. The development of woody oil industry is an important measure to increase the self-sufficiency rate of edible oil in my country. Cereal and Food Industry, 2016, 23(4):1-4. (in Chinese)
[4] 王汉中. 我国食用油供给安全形势分析与对策建议. 中国油料作物学报, 2007, 29(3):347-349.
WANG H Z. Analysis and strategy for current domestic edible oil supply. Chinese Journal of Oil Crop Sciences, 2007, 29(3):347-349. (in Chinese)
[5] 鲁剑巍. 中国油菜生产的高产高效氮素管理. 中国农业科学, 2016, 49(18):3504-3505.
LU J W. Nitrogen management with high yield and high efficiency for oilseed rape in China. Scientia Agricultura Sinica, 2016, 49(18):3504-3505. (in Chinese)
[6] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1):1-8.
SHEN J X, FU T D. Rapeseed production, improvement and edible oil supply in China. Journal of Agricultural Science and Technology, 2011, 13(1):1-8. (in Chinese)
[7] 白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004(2):3-5.
BAI Y L, JIN J Y, YANG L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils and Fertilizers, 2004(2):3-5. (in Chinese)
[8] 李小芳, 李倩, 雷利琴, 田贵生, 鲁剑巍. 高钾地力下不同镁肥用量对油菜产量和品质的影响. 湖南农业科学, 2018(8):48-50.
LI X F, LI Q, LEI L Q, TIAN G S, LU J W. Effects of magnesium application rates on yield and quality of rapeseed under high potassium soil fertility. Hunan Agricultural Sciences, 2018(8):48-50. (in Chinese)
[9] 任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53(8):1606-1616.
REN T, GUO L X, ZHANG L M, YANG X K, LIAO S P, ZHANG Y Y, LI X K, CONG R H, LU J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Scientia Agricultura Sinica, 2020, 53(8):1606-1616. (in Chinese)
[10] 邹娟, 鲁剑巍, 吴江生, 李银水. 4个双低甘蓝型油菜品种钙、镁、硫吸收动态. 华中农业大学学报, 2009, 28(3):295-299.
ZOU J, LU J W, WU J S, LI Y S. Dynamics of calcium, magnesium and sulfur uptake in 4 double-low rapeseed (Brassica napus L.) varieties. Journal of Huazhong Agricultural University, 2009, 28(3):295-299. (in Chinese)
[11] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料学报, 2012, 34(6):638-644.
LIU X W, LU J W, LI X K, BU R Y, LIU B. Absorption characteristics of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chinese Journal of Oil Crop Sciences, 2012, 34(6):638-644. (in Chinese)
[12] CAKMAK I. Magnesium in crop production, food quality and human health. Plant Soil, 2013, 368(1):1-4.
doi: 10.1007/s11104-013-1781-2
[13] 邹邦基, 何雪晖. 植物的营养. 北京: 农业出版社, 1985.
ZOU B J, HE X H. Plant Nutrition. Beijing: Agricultural Press, 1985. (in Chinese)
[14] 袁可能. 植物营养元素的土壤化学. 北京: 科学出版社, 1983.
YUAN K N. Soil Chemistry of Plant Nutrient Elements. Beijing: Science Press, 1983. (in Chinese)
[15] 郑圣先, 罗成秀, 戴平安, 李明德, 都德. 钾镁相互作用对油菜产量和养分吸收的影响. 湖南农业科学, 1989(2):29-32.
ZHENG S X, LUO C X, DAI P A, LI M D, DU D. Effect of potassium and magnesium interaction on rape yield and nutrient absorption. Hunan Agricultural Sciences, 1989(2):29-32. (in Chinese)
[16] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[17] FARQUHAR G D, CAEMMERER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1):78-90.
doi: 10.1007/BF00386231
[18] 潘瑞炽. 植物生理学. 第5版. 北京: 高等教育出版社, 2004.
PAN R Z. Plant Physiology.5th ed. Beijing: Higher Education Press, 2004. (in Chinese)
[19] 鲁剑巍. 油菜常见缺素症状图谱及矫正技术. 北京: 中国农业出版社, 2010.
LU J W. Atlas of Common Nutrient Deficiency Symptoms in Rapeseed and Correction Techniques. Beijing: China Agriculture Press, 2010. (in Chinese)
[20] 陆景陵. 植物营养学. 第二版, 上. 北京: 中国农业大学出版社, 2003.
LU J L. Plant Nutrition. 2nd ed, part one. Beijing: China Agricultural University Press, 2003. (in Chinese)
[21] MARSCHNER H, KIRKBY E A, CAKMAK I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 1996, 47(Special):1255-1263.
doi: 10.1093/jxb/47.Special_Issue.1255
[22] CAKMAK I, KIRKBY E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 2010, 133(4):692-704.
doi: 10.1111/ppl.2008.133.issue-4
[23] FARHAT N, ELKHOUNI A, ZORRIG W, SMAOUI A, ABDELLY C, RABHI M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologia Plantarum, 2016, 38(6):45.
doi: 10.1007/s11738-015-2044-z
[24] HERMANS C, MARTIN B, JOHN H, PHILIP W, NATHALIE V. How do plants respond to nutrient shortage by biomass allocation. Trends in Plant Science, 2006, 11(12):610-617.
doi: 10.1016/j.tplants.2006.10.007
[25] HERMANS C, VUYLSTEKE M, COPPENS F, CRISTESCU S, HARREN F J, INZE D. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist, 2010, 187(1):132-144.
doi: 10.1111/nph.2010.187.issue-1
[26] HAUER-JAKLI M, TRNKNER M. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research. Frontiers in Plant Science, 2019, 10:766.
doi: 10.3389/fpls.2019.00766
[27] VERBRUGGEN N, HERMANS C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil, 2013, 368(1/2):87-99.
doi: 10.1007/s11104-013-1589-0
[28] 汪洪, 褚天铎. 植物镁素营养的研究进展. 植物学通报, 1999, 16(3):245-250.
WANG H, ZHE T D. The progress of study on magnesium nutrition in plants. Chinese Bulletin of Botany, 1999, 16(3):245-250. (in Chinese)
[29] TRANKNER M, TAVAKOL E, JAKLI B. Functional of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 2018, 163(3):414-431.
doi: 10.1111/ppl.2018.163.issue-3
[30] HUBER S C, MAURY W. Effects of magnesium on intact chloroplasts. Plant Physiology, 1980, 65(2):350-354.
doi: 10.1104/pp.65.2.350
[31] 杨勇, 蒋德安, 孙骏威, 黄宗安, 金松恒. 不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响. 植物营养与肥料学报, 2005, 11(1):79-86.
YANG Y, JIANG D A, SUN J W, HUANG Z A, JIN S H. Effects of different magnesium nutrition levels on chlorophyll fluorescence characteristics and excitation energy dissipation in rice leaves. Plant Nutrition and Fertilizer Science, 2005, 11(1):79-86. (in Chinese)
[32] 李凤阳, 何激光, 官春云. 油菜叶片和角果光合作用研究进展. 作物研究, 2011, 25(4):405-409.
LI F Y, HE J G, GUAN C Y. Research progress on photosynthesis of rape leaves and siliques. Crop Research, 2011, 25(4):405-409. (in Chinese)
[33] SATO T, SHIMODA Y, MATSUDA K, TANAKA A, ITO H. Mg-dechelation of chlorophyll a by stay-green activities chlorophyll b degradation through expressing non-yellow coloring 1 in Arabidopsis thaliana. Journal of Plant Physiology, 2018, 222:94-102.
doi: 10.1016/j.jplph.2018.01.010
[34] 李伏生. 广西主要母质土壤交换性镁含量和影响玉米对镁吸收的因素. 广西农业科学, 1997(3):128-131.
LI F S. Exchange of exchangeable magnesium content of main parent material soil in Guangxi and influencing factors of magnesium absorption by maize. Guangxi Agricultural Sciences, 1997(3):128-131. (in Chinese)
[35] 沈善敏. 中国土壤肥力. 北京: 中国农业出版社, 1998.
SHEN S M. China Soil Fertility. Beijing: China Agriculture Press, 1998. (in Chinese)
[36] 刘世亮, 刘芳, 介晓磊, 雷广海, 化党领. 不同浓度镁营养液对烟草矿质营养吸收与积累的影响. 土壤通报, 2010, 41(1) :155-159.
LIU S L, LIU F, JIE X L, LEI G H, HUA D L. Effect of Mg2+concentrations on absorption and accumulation of mineral nutrients in tobacco. Chinese Journal of Soil Science, 2010, 41(1):155-159. (in Chinese)
[37] BALIGAR V C. Absorption kinetics Ca, Mg, Na and P by intact corn and onion roots. Journal of Plant Nutrition, 1985, 8(6):543-554.
doi: 10.1080/01904168509363366
[38] 杨竹青. 钙镁肥对番茄产量品质和养分吸收的影响. 土壤肥料, 1994(2):14-18.
YANG Z Q. Effect of calcium and magnesium fertilizer on tomato yield, quality and nutrient absorption. Soils and Fertilizers, 1994(2):14-18. (in Chinese)
[39] HORIE T, BRODSKY D E, COSTA A, KANEKO T F, LO S, KATSUHARA M, SCHROEDER J I. K+ transport by the OsHKT2; 4 transporter from rice with a typical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology, 2011, 156(3):1493-1507.
doi: 10.1104/pp.110.168047
[40] HARIADI Y, SHABALA S. Screening broad beans (Vicia faba) for magnesium deficiency. I. growth characteristics, visual deficiency symptoms and plant nutritional status. Functional Plant Biology, 2004, 31(5):529-537.
doi: 10.1071/FP03201
[1] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[2] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[3] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[4] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[5] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[6] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[7] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[8] REN Tao,GUO LiXuan,ZHANG LiMei,YANG XuKun,LIAO ShiPeng,ZHANG YangYang,LI XiaoKun,CONG RiHuan,LU JianWei. Soil Nutrient Status of Oilseed Rape Cultivated Soil in Typical Winter Oilseed Rape Production Regions in China [J]. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616.
[9] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[10] XueKe PU,ChunHua WU,YouMing MIAN,FangFang MIAO,XianQing HOU,Rong LI. Effects of Different Mulching Patterns on Growth of Potato and Characteristics of Soil Water and Temperature in Dry Farmland [J]. Scientia Agricultura Sinica, 2020, 53(4): 734-747.
[11] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[12] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[13] ZOU WenXiu,HAN XiaoZeng,LU XinChun,CHEN Xu,HAO XiangXiang,YAN Jun. Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize [J]. Scientia Agricultura Sinica, 2020, 53(20): 4237-4247.
[14] WANG HongYi, CHANG JiFang, WANG ZhengWen. Responses of Community Species Diversity and Productivity to Nitrogen and Phosphorus Addition During Restoration of Degraded Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2604-2613.
[15] WANG KaiLi,YANG HeLong,XIAO Hong,SUN Wei,RONG YuPing. Effects of Nitrogen Application and Clipping Height on Vegetation Productivity and Plant Community Composition of Haying Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2625-2636.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!