Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4052-4064.doi: 10.3864/j.issn.0578-1752.2018.21.005

• PLANT PROTECTION • Previous Articles     Next Articles

MdWRKY40 Mediated Improvement of the Immune Resistance of Apple and Arabidopsis thaliana to Botryosphaeria dothidea

QianQian ZHOU1(),HuaRong QIU1,XiaoWen HE1,XianPu WANG1,XiuXia LIU1,BaoHua LI2,ShuJing WU1(),XueSen CHEN1()   

  1. 1College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong
    2College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong
  • Received:2018-05-14 Accepted:2018-06-19 Online:2018-11-01 Published:2018-11-01
  • Contact: QianQian ZHOU,ShuJing WU,XueSen CHEN E-mail:18763829703@163.com;wushujing666@163.com;chenxs@sdau.edu.cn

Abstract:

【Objective】The objective of this study is to clone MdWRKY40 from ‘Fuji’ apple, research its expression pattern under salicylic acid (SA)-induced conditions and its role in the disease resistance pathway of Botryosphaeria dothidea, and to provide a theoretical basis for further revealing the disease resistance mechanism of apple. 【Method】 The full-length CDS sequence of MdWRKY40 was cloned from ‘Fuji’ apple, and its bioinformatics analysis was carried out. Fluorescence quantitative PCR (qRT-PCR) was used to analyze the expression level in different apple tissues and the response to abiotic stress SA, to study the effect of exogenous SA treatment on apple leaves inoculated with pathogenic fungi B. dothidea, and to detect the expression of pathogenesis-related protein gene by qRT-PCR. MdWRKY40 was expressed heterologous in Arabidopsis thaliana, and the stably expressed A. thaliana seedlings were treated with B. dothidea to observe the degree of disease and the number of infected leaves. The expression of disease-associated genes was analyzed by qRT-PCR. The root length of A. thaliana seedlings was measured and the expression of auxin-related genes was detected by qRT-PCR. 【Result】 MdWRKY40 contains a complete open reading frame of 858 bp in length and encodes 286 amino acids. The predicted molecular weight is 32.088 kD and the isoelectric point is 8.15. Phylogenetic tree analysis showed that MdWRKY40 has the highest similarity with the PbWRKY40 sequence, and its genetic relationship is closest. MdWRKY40 and AtWRKY40 locate in different branches, and its genetic relationship is far from that of AtWRKY40. The multiple sequence alignment analysis of MdWRKY40 and AtWRKY40 by using DANMAN software revealed that both MdWRKY40 protein and AtWRKY protein contain a WRKYGQK conserved domain, but similarity is only 29.78%. qRT-PCR analysis showed that the expression level of MdWRKY40 was the highest in root and lowest in leaf. SA induced MdWRKY40 expression in root, stem and leaf, and the expression all increased first and then decreased, reached the highest level at 6 h. Exogenous SA enhanced the resistance of apple leaves to B. dothidea, the incidence of untreated leaves reached 92.59%, and the incidence after SA treatment decreased to 79.26%, and significantly increased the expression of disease-associated protein genes MdPR2 and MdPR5. Compared with the wild type, the overexpression of MdWRKY40 in A. thaliana significantly increased the resistance of A. thaliana leaves to B. dothidea. The incidence of wild type A. thaliana reached 77.5%, while the incidence of two transgenic A. thaliana lines was only 21.5% and 17.4%, and significantly increased the expression of PR1, PR3, and PR4 genes associated with disease progression. The root growth of A. thaliana plants with overexpression of MdWRKY40 was inhibited. After 7 days of culture, the length of main root of transgenic A. thaliana was 39.9% and 43.1% respectively of that of wild type A. thaliana. After 10 days of culture, the length of main root of transgenic A. thaliana was 58.5% and 55.4% respectively of that of wild type A. thaliana. The expression level of the auxin synthesis-related gene AtTAA1 and auxin transport-related genes AtPIN1 and AtPIN2 was significantly lower in the MdWRKY40 overexpression lines than in the wild type.【Conclusion】The expression of MdWRKY40 was induced by the infection of SA and the pathogenic fungi B. dothidea. MdWRKY40 is an important disease resistance gene in apple. The overexpression of MdWRKY40 significantly increased the resistance to B. dothidea. MdWRKY40 has the function of regulating the growth and development of plant roots, which may affect the growth and development of plant roots by down-regulating the expression of auxin transport-related genes.

Key words: apple, MdWRKY40, salicylic acid (SA), Botryosphaeria dothidea, immune resistance, root growth

Table 1

Primer sequences used for qRT-PCR"

基因Gene 正向引物序列 Forward primer sequence (5′-3′) 反向引物序列Reverse primer sequence (5′-3′)
MdWRKY40 GAGAATGCAACCCTAAGATTCC ATATGCATTTGGTGGTGGTG
MdPR2 ACTCACAGTCACCATCCTCAAC AATCGAACATCAGCTGAATAGG
MdPR5 CTCACCTTGGCCATCCTCTT TTGGATGCTAGTTCGAAGC
AtPR1 TCATGGCTAAGTTTGCTTCC AATACACACGATTTAGCACC
AtPR3 ACGGAAGAGGACCAATGCAA GAGCAGTCATCCAGAACCAAATC
AtPR4 ACCACCGCGGACTACTGTTC ACCACCGCGGACTACTGTTC
AtPIN1 CGGTGGGAACAACATAAGCA CACACTTGTTGGTGGCATCAC
AtPIN2 CCGTGGGGCTAAGCTTCTCATCT AGCTTTCCGTCGTCTCCTATCTCC
AtTAA1 GATGAAGAATCGGTGGGAGAAGC CGTCCCTAGCCACGCAAACGCAGG

Fig. 1

Construction of MdWRKY40 expression vector and bioinformatics analysis Expasy预测其分子量为32.088 kD,等电点为8.15,用DANMAN软件进行多序列比对分析发现,MdWRKY40蛋白与拟南芥AtWRKY40蛋白相似度为29.78%,都含有一个WRKYGQK保守结构域(图1-C)。"

Fig. 2

Phylogenetic tree analysis of MdWRKY40 and WRKY40 of other species"

Fig. 3

Expression analysis of MdWRKY40 in different tissues of apple and expression after induced by salicylic acid and B. dothidea infection Different lowercase letters on the column indicate significant differences (P<0.05); ** indicates extremely significant difference (P<0.01). The same as below"

Fig. 4

SA treatment of apple leaves inoculated with B. dothidea"

Fig. 5

Identification of transgenic A. thaliana"

Fig. 6

Overexpression of MdWRKY40 A. thaliana leaves inoculated with B. dothidea"

Fig. 7

Expression of disease-associated genes in transgenic A. thaliana"

Fig. 8

The root growth status of transgenic and wild type A. thaliana"

Fig. 9

Expression of auxin-related genes in transgenic and wild type A. thaliana"

[1] 国立耘, 李金云, 李保华, 张新忠, 周增强, 李广旭, 王英姿, 李晓军, 黄丽丽, 孙广宇, 文耀东 . 中国苹果枝干轮纹病发生和防治情况. 植物保护, 2009,35(4):120-123.
GUO L Y, LI J Y, LI B H, ZHANG X Z, ZHOU Z Q, LI G X, WANG Y Z, LI X J, HUANG L L, SUN G Y, WEN Y D . Investigations on the occurrence and chemical control of Botryosphaeria canker of apple in China. Plant Protection, 2009,35(4):120-123. (in Chinese)
[2] 张芮 . 苹果MdWRKY33基因在轮纹病抗性形成中的作用机制研究[D]. 泰安: 山东农业大学, 2015.
ZHANG R . The research on the mechanism of MdWRKY33 mediated disease resistance against the apple ring rot pathogenic fungi Botryosphaeria dothidea[D]. Taian: Shandong Agricultural University, 2015. ( in Chinese)
[3] TANG W, DING Z, ZHOU Z Q, WANG Y Z, GUO L Y . Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Disease, 2012,96(4):486-496.
[4] LI H Y, CAO R B, MU Y T . In vitro inhibition of Botryosphaeria dothidea and Lasiodiplodia theobromae, and chemical control of gummosis disease of Japanese apricot and peach trees in Zhejiang Province, China. Crop Protection, 1995,14(3):187-191.
[5] LI Y, HAN L R, ZHANG Y, FU X, CHEN X, ZHANG L, MEI R, WANG Q . Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. The Plant Pathology Journal, 2013,29(2):168-173.
[6] EULGEM T, SOMSSICH I E . Networks of WRKY transcription factors in defense signaling. Current Opinion of Plant Biology, 2007,10(4):366-371.
doi: 10.1016/j.pbi.2007.04.020 pmid: 17644023
[7] 薛华, 张红岩, 李小艳, 赵云, 王茂林 . 油菜矮秆突变WRKY转录因子cDNA克隆及表达分析. 西北植物学报, 2008,28(3):452-458.
doi: 10.3321/j.issn:1000-4025.2008.03.004
XUE H, ZHANG H Y, LI X Y, ZHAO Y, WANG M L . cDNA cloning and expression analysis of a dwarfism related WRKY transcription factor in Brassica napus L. Acta Botanica Boreali-Occidentalia Sinica, 2008,28(3):452-458. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2008.03.004
[8] YU D, CHEN C, CHEN Z . Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 2001,13(7):1527-1540.
[9] SHEN Q H, SAIJO Y, MAUCH S, BISKUP C, BIERI S, KELLER B, SEKI H, ÜLKER B, SOMSSICH I E, SCHULZE-LEFERT P . Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 2007,315(5815):1098-1103.
doi: 10.1126/science.1136372 pmid: 17185563
[10] HAN M, KIM C Y, LEE J, LEE S K, JEON J S . OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Molecules and Cells, 2014,37(7):532-539.
doi: 10.14348/molcells.2014.0128 pmid: 4132305
[11] DAI X, WANG Y, ZHANG W H . OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. Journal of Experimental Botany, 2016,67(3):947-960.
doi: 10.1093/jxb/erv515 pmid: 4737085
[12] KIM C Y, VO K T X, NGUYEN C D, JEONG D H, LEE S K, KUMAR M, KIM S R, PARK S H, KIM J K, JEON J SK . Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports, 2016,10(1):13-23.
doi: 10.1007/s11816-015-0383-2
[13] RAINERI J, WANG S, PELEG Z, BLUMWALD E, CHAN R L . The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Molecular Biology, 2015,88(4/5):401-413.
doi: 10.1007/s11103-015-0329-7 pmid: 25957211
[14] MIRABELLA R, RAUWERDA H, ALLMANN S, SCALA A, SPYROPOULOU E A, DE VRIES M, BOERSMA M R, BREIT T M, HARING M A, SCHUURINK R C . WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. The Plant Journal, 2015,83(6):1082-1096.
[15] ABBRUSCATO P, NEPUSZ T, MIZZI L, DEL CORVO M, MORANDINI P, FUMASONI I, MICHEL C, PACCANARO A, GUIDERDONI E, SCHAFFRATH U, MOREL J, PIFFANNELLI P, FAIVRE-RAMPANT O . OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology, 2012,13(8):828-841.
doi: 10.1111/j.1364-3703.2012.00795.x pmid: 22443363
[16] CHOI C, HWANG S H, FANG I R, KWON S I, PARK S R, AHN I, KIM J B, HWANG D J . Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytologist, 2015,208(3):846-859.
[17] HAN M, RYU H S, KIM C Y, PARK D S, AHN Y K, JEON J S . OsWRKY30 is a transcription activator that enhances rice resistance to the Xanthomonas oryzae pathovar oryzae. Journal of Plant Biology, 2013,56(4):258-265.
[18] HWANG S H, KWON S I, JANG J Y, FANG I R, LEE H, CHOI C, PARK S R, AHN I, BAE S, HWANG D J . OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. Plant Cell Reports, 2016,35(9):1975-1985.
doi: 10.1007/s00299-016-2012-0 pmid: 27300023
[19] LAN A, HUANG J, ZHAO W, PENG Y, CHEN Z, KANG D . A salicylic acid-induced rice (Oryza sativa L.) transcription factor OsWRKY77 is involved in disease resistance of Arabidopsis thaliana. Plant Biology, 2013,15(3):452-461.
[20] CIOLKOWSKI I, WANKE D, BIRKENBIHL R P, SOMSSICH I E . Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 2008,68(1/2):81-92.
doi: 10.1007/s11103-008-9353-1 pmid: 2493524
[21] RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J . WRKY transcription factors. Trends in Plant Science, 2010,15(5):247-258.
doi: 10.1016/j.tplants.2010.02.006
[22] 马丽娜, 张雄, 窦道龙, 柴春月 . 本氏烟NbWRKY40亚家族转录因子抗病相关功能研究. 植物病理学报, 2016,46(6):791-802.
MA L N, ZHANG X, DOU D L, CHAI C Y . Functional analysis of NbWRKY40 transcription factors of Nicotiana benthamiana. Acta Phytopathologica Sinica, 2016,46(6):791-802. (in Chinese)
[23] XU X, CHEN C, FAN B, CHEN Z . Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell, 2006,18(5):1310-1326.
doi: 10.1105/tpc.105.037523 pmid: 16603654
[24] PANDEY S P, ROCCARO M, SCHöN M, LOGEMANN E, SOMSSICH I E . Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal, 2010,64(6):912-923.
doi: 10.1111/j.1365-313X.2010.04387.x pmid: 21143673
[25] 罗昌国, 袁启凤, 裴晓红, 吴亚维, 郑伟, 章镇 . 富士苹果MdWRKY40b基因克隆及其对白粉病的抗性分析. 西北植物学报, 2013,33(12):2382-2387.
LUO C G, YUAN Q F, PEI X H, WU Y W, ZHENG W, ZHANG Z . Cloning of MdWRKY40b gene in Fuji apple and its response to powdery mildew stress. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(12):2382-2387. (in Chinese)
[26] 刘威, 张骏, 顾冕, 徐国华 . 水稻转录因子WRKY-P1对地上部株型和根系构型的影响. 中国科技论文在线, 2016.
LIU W, ZHANG J, GU M, XU G H . The effect of a rice transcription factor WRKY-P1 on shoot and root architecture. Sciencepaper Online, 2016. ( in Chinese)
[27] 张高雷, 李保华, 董向丽, 王彩霞, 李桂舫, 国立耘 . 苹果轮纹病瘤组织形态研究. 植物病理学报, 2011,41(1):98-101.
ZHANG G L, LI B H, DONG X L, WANG C X, LI G F, GUO L Y . Microanatomy conformation of apple branch tumors caused by Botryosphaeria dothidea. Acta Phytopathologica Sinica, 2011,41(1):98-101. (in Chinese)
[28] ZHANG X, HENRIQUES R, LIN S S, NIU Q W, CHUA N H . Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006,1(2):641-646.
[29] WU S, LU D, KABBAGE M, WEI H L, SWINGLE B, RECORDS A R, DICKMAN M, HE P, SHAN L . Bacterial effector HopF2 suppresses Arabidopsis innate immunity at the plasma membrane. Molecular Plant-Microbe Interactions, 2011,24(5):585-593.
doi: 10.1094/MPMI-07-10-0150 pmid: 21198360
[30] CAI H, YANG S, YAN Y, XIAO Z, CHENG J, WU J, QIU A, LAI Y, MOU S, GUAN D, HUANG R, HE S . CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. Journal of Experimental Botany, 2015,66(11):3163-3174.
[31] WANG Y, DANG F, LIU Z, WANG X, EULGEM T, LAI Y, YU L, SHE J, SHI Y, LIN J, CHEN C, GUAN D, QIU A, HE S . CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Molecular Plant Pathology, 2013,14(2):131-144.
[32] ZHENG Z Y, QAMAR S A, CHEN Z X, MENGISTE T . Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 2006,48(4):592-605.
doi: 10.1111/j.1365-313X.2006.02901.x pmid: 17059405
[33] 石亚莉, 周会玲, 唐永萍, 贺军花, 马利菁 . 水杨酸诱导苹果采后灰霉病抗性研究. 西北农林科技大学学报 (自然科学版) , 2018,46(2):84-91, 103.
SHI Y L, ZHOU H L, TANG Y P, HE J H, MA L J . Induced resistance of postharvest apples to Botrytis cinerea induced by salicylic acid treatment. Journal of Northwest A&F University (Natural Science Edition), 2018,46(2):84-91, 103. (in Chinese)
[34] KAZAN K . Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015,20(4):219-229.
doi: 10.1016/j.tplants.2015.02.001 pmid: 25731753
[35] KHAN M I, FATMA M, PER T S, ANJUM N A, KHAN N A . Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 2015,6:462.
doi: 10.3389/fpls.2015.00462 pmid: 26175738
[36] RAMAMOORTHY R, JIANG S Y, KUMAR N, VENKATESH P N, RAMACHANDRAN S . A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant and Cell Physiology, 2008,49(6):865-879.
doi: 10.1093/pcp/pcn061 pmid: 18413358
[37] 邱化荣, 周茜茜, 何晓文, 张宗营, 张世忠, 陈学森, 吴树敬 . 基于转录组分析苹果水杨酸特异响应基因MdWRKY40的启动子鉴定. 中国农业科学, 2017,50(20):3970-3990.
QIU H R, ZHOU Q Q, HE X W, ZHANG Z Y, ZHANG S Z, CHEN X S, WU S J . Identification of MdWRKY40 promoter specific response to salicylic acid by transcriptome sequencing. Scientia Agricultura Sinica, 2017,50(20):3970-3990. (in Chinese)
[38] ROBATZEK S, SOMSSICH I E . Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes and Development, 2002,16(9):1139-1149.
[39] GU Y, LI W, JIANG H, WANG Y, GAO H, LIU M, CHEN Q, LAI Y, HE C . Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Journal of Experimental Botany, 2017,68(11):2717-2729.
doi: 10.1093/jxb/erx147 pmid: 28472462
[40] ZHANG J, PENG Y, GUO Z . Constitutive expression of pathogen- inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Research, 2008,18(4):508-521.
doi: 10.1038/cr.2007.104 pmid: 18071364
[41] WEI L, WANG H, YU D . Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short- day conditions. Molecular Plant, 2016,9(11):1492-1503.
doi: 10.1016/j.molp.2016.08.003 pmid: 27592586
[42] CHENG Y, AHAMMED G J, YU J, YAO Z, RUAN M, YE Q, LI Z, WANG R, FENG K, ZHOU G, YANG Y, DIAO W, WAN H . Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper. Scientific Reports, 2016,6:39000.
doi: 10.1038/srep39000 pmid: 27991526
[43] YANG Y, CHI Y, WANG Z, ZHOU Y, FAN B, CHEN Z . Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. Journal of Experimental Botany, 2016,67(15):4727-4742.
doi: 10.1093/jxb/erw252 pmid: 4973743
[44] DEVAIAH B N, KARTHIKEYAN A S, RAGHOTHAMA K G . WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 2007,143(4):1789-1801.
doi: 10.1104/pp.106.093971 pmid: 17322336
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[4] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[7] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[8] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[9] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[10] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[11] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[12] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[13] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[14] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[15] ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!