Scientia Agricultura Sinica ›› 2006, Vol. 39 ›› Issue (8): 1680-1687 .

• RESEARCH NOTES • Previous Articles     Next Articles

Distribution of Dwarfing Genes Rht-B1b and Rht-D1b in Chinese Bread Wheats Detected by STS Marker

,,,,   

  1. 中国农业科学院作育种栽培研究所/国家小麦改良中心
  • Received:2004-10-20 Revised:2004-12-16 Online:2006-08-10 Published:2006-08-10

Abstract: 【Objective】 Understanding the distribution of dwarfing genes in Chinese wheat will be crucial for yield improvement.【Method】A total of 239 Chinese wheat cultivars and advanced lines from major wheat regions were detected by STS markers to understand the distribution of the dwarfing genes Rht-B1b (Rht1) and Rht-D1b (Rht2). 【Result】The PCR-based markers could be used to test the presence of Rht-B1b and Rht-D1b in wheat cultivars. The average frequency was 24.3% for Rht-B1b gene and 46.9% for Rht-D1b gene, respectively. Frequencies in Northern Winter Wheat Zone, Yellow & Huai River Facultative Winter Wheat Region, Middle & Low Yangtze Valley Winter Wheat Region, Southwestern Winter Wheat Region, Northeastern Spring Wheat Region, Northern Spring Wheat Region, Northwestern Spring Wheat Region and Xinjiang Winter-Spring Wheat Region were 25.8%, 28%, 42.3%, 8.3%, 0%, 9.1%, 25% and 62.5% for Rht-B1b gene, and 35.5%, 69%, 23.1%, 38.9%, 0%, 72.7%, 37.5% and 12.5% for Rht-1Db gene, respectively. 【Conclusion】Molecular markers and pedigree information confirmed that Rht-B1b is from St2422/464 and Norin 10, Rht-D1b is from Norin 10, Suwon 86, Huixianhong, and Youbaomai.

Key words: Bread wheat, Dwarfing gene, Rht-B1b, Rht-D1b, Molecular marker

[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[5] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[6] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[7] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[8] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[9] HENG YanFang,LI Jian,WANG Zheng,CHEN Zhuo,HE Hang,DENG XingWang,MA LiGeng. Cloning, Expression and Functional Analysis of a Male Fertility Gene ThMs1 in Bread Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4727-4737.
[10] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[11] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[12] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[13] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[14] WANG Jia, ZENG ZhaoQiong, LIANG JianQiu, YU XiaoBo, WU HaiYing, ZHANG MingRong. Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743-2757.
[15] HAN Ran, LI TianYa, GONG WenPing, LI HaoSheng, SONG JianMin, LIU AiFeng, CAO XinYou, CHENG DunGong, ZHAO ZhenDong, LIU Cheng, LIU JianJun. New Resistance Sources of Wheat Stem Rust and Molecular Markers Specific for Relative Chromosomes That the Resistance Genes are Located on [J]. Scientia Agricultura Sinica, 2018, 51(7): 1223-1232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!