Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (08): 1514-1521 .

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES • Previous Articles     Next Articles

Analysis of Waxy Proteins in Chinese Winter Wheat Cultivars Using SDS-PAGE and Molecular Markers

,,,,   

  1. 中国农业科学院作物科学研究所
  • Received:2004-07-05 Revised:1900-01-01 Online:2005-08-10 Published:2005-08-10

Abstract: A total of 306 wheat cultivars and advanced lines from China, US and Australia were screened for the Waxy protein by SDS-PAGE. The results indicated that 46 of these cultivars were the null Wx-B1 type. The proportion of individuals with null Wx-B1 in 120 F2 progenies derived from the Jimai19×Yumai47 was 1/4 approximately, in accordance with the theoretical ratio. Three STS and 1 SSR markers were used to analyze the wheat cultivars with different types of Waxy proteins. Validation of the markers was carried out for the detection of Wx-7A, Wx-4A and Wx-7D genes. The results indicated that a 1172 bp-fragment was amplified with Wx-7A specific STS marker from the wild genotypes, while the fragment was absent for the mutant with null Wx-A1; a 440 bp-fragment was detected with Wx-4A specific STS marker from the wild genotypes, whereas, the fragment was absent for the mutant with null Wx-B1; a 940 bp-fragment was amplified with Wx-7D specific STS marker from the wild genotypes, and a 360 bp-fragment was found for the mutant such as 'Baihuomai' with null Wx-D1; and a 204 bp-fragment was detected with Wx-7D specific SSR marker from the wild genotypes, while the fragment was absent for the mutant with null Wx-D1. These markers are useful tools to identify wheat cultivars with mutant and normal alleles of the Waxy genes in marker-assisted selection of wheat breeding programme.

Key words: Triticum aestivum L., Waxy protein subunit, SDS-PAGE, Molecular marker

[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[5] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[6] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[7] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[8] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[9] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[10] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[11] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[12] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[13] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[14] WANG Jia, ZENG ZhaoQiong, LIANG JianQiu, YU XiaoBo, WU HaiYing, ZHANG MingRong. Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743-2757.
[15] HAN Ran, LI TianYa, GONG WenPing, LI HaoSheng, SONG JianMin, LIU AiFeng, CAO XinYou, CHENG DunGong, ZHAO ZhenDong, LIU Cheng, LIU JianJun. New Resistance Sources of Wheat Stem Rust and Molecular Markers Specific for Relative Chromosomes That the Resistance Genes are Located on [J]. Scientia Agricultura Sinica, 2018, 51(7): 1223-1232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!