Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (06): 1232-1237 .

• HORTICULTURE • Previous Articles     Next Articles

Anatomical Observations of Anther Development of NCa, a Cytoplasmic Male Sterile Line in Rapeseed( Brassica napus L.)

,,   

  1. 中国农业科学院油料作物研究所
  • Received:2004-08-16 Revised:1900-01-01 Online:2005-06-10 Published:2005-06-10

Abstract: A cytoplasmic male sterile (CMS) line, named NCa, was obtained from the backcrossing descendents of hybridization between two amphidiploid species of Brassica napus L. (AACC, 2n =38) and B. carinata (BBCC, 2n =34), respectively. The anatomical observations on the anther development of NCa by light microscope and transmission electron microscope showed that the abortion of the anther development occurred at the later mono-nucleus microspore (MNM) stage. The microspore mother cell of NCa could pass through meiosis and form tetrads and then tetrads could release microspores as the same as the fertile line. The released microspores with one nucleus could continuously develop and form pollen wall soonly. The protoplast and nucleus of MNM degraded in succession and just left the empty pollen wall at last or with large vacuoles. The tapetum development was similar to that of the fertile anther up to tetrad stage but after that the protoplast of tapetal cell was rich in small vacuoles and degenerated gradually. Anther development of NCa sterile line was obviously different from all of the other kinds of CMS lines examined before, because its abortion stage revealed here was later than any of the examined CMS types and it formed pollen wall soon after microspores released and remained that until pollen degradation.

Key words: Brassica napus, Cytoplasmic male sterility, Anther development, Pollen abortion, Anatomy

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[7] CAO XiaoDong,LIU ZiGang,MI WenBo,XU ChunMei,ZOU Ya,XU MingXia,ZHENG GuoQiang,FANG XinLing,CUI XiaoRu,DONG XiaoYun,MI Chao,CHEN QiXian. Analysis on the Adaptability of Northward Planting of Brassica napus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4164-4176.
[8] WANG Qun,ZHAO XiangYang,LIU DongYao,YAN ZhenHua,LI HongPing,DONG PengFei,LI Chaohai. Root Morphological, Physiological Traits and Yield of Maize Under Waterlogging and Low Light Stress [J]. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495.
[9] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[10] WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin,QIAN Wei. Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor [J]. Scientia Agricultura Sinica, 2020, 53(10): 1950-1958.
[11] XUE YaDong,YANG Lu,YANG HuiLi,LI Bing,LIN YaNan,ZHANG HuaiSheng,GUO ZhanYong,TANG JiHua. Comparative Transcriptome Analysis Among the Three Line of Cytoplasmic Male Sterility in Maize [J]. Scientia Agricultura Sinica, 2019, 52(8): 1308-1323.
[12] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[13] WANG XueDe. Overview of the Study and Application of Cytoplasmic Male Sterility in Cotton [J]. Scientia Agricultura Sinica, 2019, 52(8): 1341-1354.
[14] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[15] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!