Scientia Agricultura Sinica

Previous Articles    

Cloning and Function Analysis of MsMAX2 gene in alfalfa (Medicago sativa L.)

MA Lin, WEN HongYu, WANG XueMin, GAO HongWen, PANG YongZhen   

  1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2021-03-05 Accepted:2021-04-19 Published:2021-05-25

Abstract: 【Background】Branching is one of the key yield components, which plays an important role in alfalfa (Medicago sativa L.) breeding. Exploring and functional characterization of key branching-related genes are of significance in accelerating breeding of alfalfa with high yield and quality. MAX2 is an important branching-related gene, which is involved in the regulation of branching in several plant species. 【Objective】Our research on the functional characterization of MsMAX2 in alfalfa will lay a foundation for the molecular mechanism of MsMAX2 in regulating branch development in alfalfa.【Method】The gene sequence of MAX2 in alfalfa was isolated by using homologous cloning. Sequence characteristics and phylogenetic tree of MsMAX2 were analyzed by using bioinformatics tools including Expy Protparatam, DNAMAN, and MEGA-X. The real-time quantitative PCR (qRT-PCR) was applied to detect the tissue-specific expression pattern of MsMAX2 in alfalfa. The subcellular localization of the MsMAX2 protein was determined by using transient expression system in tobacco. The biological function of MsMAX2 was clarified by transformation in the Arabidopsis mutant via Agrobacterium-mediated transformation. Proteins interacting with MsMAX2 were determined by using yeast two-hybrid assay. 【Result】The length of MsMAX2 CDS is 2136 bp, encoding a protein of 711 amino acids, and it belongs to the F-box protein super-family. Phylogenetic analysis showed that the evolution of MAX2 homologs was highly similar to the differentiation of species, indicating that MsMAX2 was a functionally conserved gene. It was showed that MsMAX2 was expressed in the neck at the highest level, followed by in the leaves of seedling, the inflorescences on pollination day and the roots; the expression level of MsMAX2 was relatively low in other tissues, indicating it functions in multiple tissues. Subcellular localization assay showed that the MsMAX2 protein was localized in the nucleus. Complementation assay in Arabidopsis max2 mutant showed that the multi-branch phenotype was recovered by the ectopic expression of MsMAX2. Yeast two hybrid assay demonstrated that the interaction between MsMAX2 and hormone receptor D14 depended on the existence of strigolactones. 【Conclusion】 The MsMAX2 was obtained from alfalfa and it was highly expressed in the neck and the encoding MsMAX2 protein was localized in nucleus. When the MsMAX2 was over-expressed in the Arabidopsis max2 mutant, its multi-branch phenotype was recovered, indicating that MsMAX2 regulates branch development in alfalfa plant, and its function was conserved.

Key words: alfalfa, MsMAX2, branching, complementation assay, yeast two hybrid assay

[1] ZHAO WeiHong, HAN WenXiong, YANG Bo, MENG WeiKang, CHAI HaiLiang, MA YiMin, ZHANG ZhanSheng, WANG LiFeng, WANG Yan, WANG MingYuan, ZHANG Shan, DING YuLin, WANG JinLing, JIRINTAI Sulijid, WANG FengLong, ZHAO Li, LIU YongHong. Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia [J]. Scientia Agricultura Sinica, 2023, 56(6): 1204-1214.
[2] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[3] BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong. Screening of the Host Factors Interacting with CP of Citrus Yellow Vein Clearing Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892.
[4] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[5] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[6] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[7] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[8] SUN YuChen,JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan,YIN Wei. Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro [J]. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254.
[9] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[10] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[11] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[12] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[13] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[14] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[15] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!