Scientia Agricultura Sinica

Previous Articles    

Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province

YU WeiBao1, 2, LI Nan3, KOU YiHong1, 2, CAO XinYou1, SI JiSheng1, HAN ShouWei1, 2, LI HaoSheng1, ZHANG Bin1, WANG FaHong1, ZHANG HaiLin2, ZHAO Xin2, LI HuaWei1* #br#   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Key Laboratory of Wheat Biology and Genetics and Breeding in Northern Huang-hHuai River Plain, Ministry of Agriculture and Rural Affairs/Shandong Technology Innovation Center of Wheat/Jinan Key Laboratory of Wheat Genetic Improvement, Jinan 250100; 2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China3Shandong Meteorological Bureau, Jinan 250031
  • Online:2022-07-27 Published:2022-07-27

Abstract:

ObjectiveIn this paper, the dominant distribution areas of strong gluten wheat were clarified in Shandong province, and the influence of key meteorological factors on its quality parameters was analyzed. MethodThe high-quality strong-gluten wheat Jimai 44 was selected as the research material, and 296 samples were collected from 44 counties and districts in Shandong provincein the growing seasons of 2018 to 2020. The relationship of meteorological factors, such as light, temperature and water, in different growth periods with wheat quality parameters was analyzed byusing the method of stepwise regression. The geographic information system (GIS) was used for spatial visualization analysis, and the possible distribution of high-quality strong-gluten wheat advantageous areas was explored in Shandong province. ResultThere were differences in the performance of each quality parameter in the different regions in different years. The proportion of samples reaching the standard of strong gluten wasshown as maximum pull resistance> water absorption rate>bulk density>stabilize time>protein content>tensile area>wet gluten content in two years, and the coefficients of variation of quality parameters from large to small were stabilize time, tensile area, maximum pull resistance, wet gluten content, protein content, water absorption rate, and bulk density. The bulk density in western and northwestern Shandong was generally higher than that in other regions, and decreased with the increase of longitude, which was mainly related to the influence of rainfall during the rejuvenation-jointing period. The protein content was positively affected by the accumulated temperature ≥5℃ during the anthesis-milk maturity period, while increased from southwest to northeast in 2018-2019 and from northwest to southeast in 2019-2020. The wet gluten content was higher in the eastern Shandong region, which was significantly related to the high rainfall during the anthesis-milk maturity period in this region. The stabilize time was significantly negatively correlated with the maximum temperature during the jointing-anthesis period, and positively correlated with the rainfall during the sowing-overwintering period, and this affected its high value distribution and regional variation; the tensile area was significantly negatively correlated with the accumulated temperature ≥5℃ during the rejuvenation-jointing period, and gradually decreased from the west to the east of Shandong province. The maximum pull resistance was significantly negatively correlated with the accumulated temperature ≥5℃ during the anthesis-milk maturity period; it was low in the east-west direction and high in the middle area of Shandong province. Taking into account comprehensively, the high-quality probability of high-gluten wheat planting in eastern and southern Shandong province was stronger than that in central and northern, and the lowest in western. ConclusionEastern and southern regions were the optimal planting areas for strong-gluten wheat in Shandong province, with the greatest possibility of high quality. The high maximum temperature during rejuvenation-jointing period, jointing-anthesis period and grain-filling period was unfavorable to the rheological parameters of wheat dough, while the increase of effective accumulated temperature during anthesis-milk maturity period was beneficial to the increase of protein content. The rainfall during sowing-overwintering period was beneficial to the increase of dough stabilize time; when the rainfall was less than 14.5 mm during anthesis-milk maturity period, it was not beneficial for the wet gluten content to reach the strong gluten standard; thrainfall during the rejuvenation-jointing period is was not conducive to the increase of bulk density. Therefore, in the production of strong gluten wheat, it was suggested that irrigation should be carried out in the overwintering period and early grouting according to the weather conditions, and the irrigation time during rejuvenation-jointing period should be postponed as far as possible.

Key words: wheat quality parameters, meteorological factors, spatial distribution

[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] ZHANG Xu, HAN JinYu, LI ChenChen, ZHANG DanDan, WU QiMeng, LIU ShengJie, JIAO HanXuan, HUANG Shuo, LI ChunLian, WANG ChangFa, ZENG QingDong, KANG ZhenSheng, HAN DeJun, WU JianHui. Identification of Adult Plant Stripe Rust Resistance Candidate Genes of YrZ501-2BL by Gene Association and Transciptome Analysis in Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2023, 56(8): 1429-1443.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[8] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[9] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[10] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[11] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[12] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!