Scientia Agricultura Sinica

Previous Articles    

Genome-wide Identification and Expression Analysis of DIR Gene Family in Cucumber (Cucumis sativus L.) #br#

ZHANG KaiJing1, HE ShuaiShuai1, JIA Li2, HU YuChao1, YANG DeKun1, LU XiaoMin1, ZHANG QiAn2, YAN CongSheng2 #br#   

  1. 1College of Agriculture, Anhui Science and Technology University, Fengyang 233100, Anhui; 2Institute of Horticulture, Anhui Academy of Agricultural Sciences/Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, Hefei 230031
  • Published:2022-06-24

Abstract: 【Objective】 Based on the cucumber genome information and transcriptome sequencing big-data, the DIR gene family in cucumber was identified with bioinformatics methods, and the expression pattern analysis of DIR family genes in different tissues and stresses response were analyzed. It will lay an important foundation for further study on the biological function of cucumber DIR genes. 【Method】 With the reported HMM model file of DIR gene, the probable DIR genes ID from the cucumber protein database was firstly identified using HMMSearch program in the HMMER software package. The cucumber DIR genes were ultimately verified using online tools Pfam and SMART. The tools of ExPASy, TBtools, GSDS, MEME, MEGA, MCScanX and Circos were used to analyze the physicochemical characteristics, chromosomal distributions, gene structure, phylogenetic tree and synteny of cucumber DIR genes. Based on cucumber transcriptome sequencing big-data of different tissues and under different stresses, transcriptome sequencing analysis was re-analyzed using cucumber V3 version genome information. The data of cucumber DIR genes in different transcriptome sequencing analysis were retrieved. The expression heatmaps of DIR gene family were drawn using TBtools softwore, and the expression patterns of cucumber DIR genes in different tissues and stresses response were analyzed. 【Result】 Total of 23 DIR genes were identified from cucumber genome, which distributed to 7 chromosomes. The number of amino acids of these DIR genes ranged from 78—684, and the molecular weight ranged from 8.70—73.82 kD. Phylogenetic analysis divided the cucumber DIR genes into 3 subgroups, the structure and motif of the genes in each subgroup were similar. Synteny analysis showed that the 12 cucumber DIR genes were collinearity with 19 Arabidopsis DIR genes with 27 kinds of linear relationships, and 12 cucumber DIR genes were collinearity with 11 rice DIR genes with 19 kinds of linear relationships. While only 8 cucumber DIR genes were conservative, which were not collinearity with any DIR gene in Arabidopsis and rice. Tissue-specific expression analysis revealed that some cucumber DIR genes have low or no expression levels in all tissues including root, stem, flower, fruit, leaf and so on, some cucumber DIR genes have high expression levels in all tissues, and some DIR genes have specific expression levels in some tissues, but no or low expression levels in other tissues. This suggested that different cucumber DIR genes have tissue specific expression patterns. The expression profiles analysis of cucumber DIR genes under biotic and abiotic stresses conditions revealed that cucumber DIR gene, CsaV3_4G023490, were up-regulated expression in response to all stresses, which means this gene play an important role in the process of cucumber growth and development. 【Conclusion】 Total of 23 DIR genes were identified in cucumber, which were divided into 3 subgroups. The gene members in each subgroup were highly conserved, the gene structure and protein conserved domain were different among 3 subgroups. The expression patterns of cucumber DIR genes in different tissues and stresses response were different, which coordinately regulated the growth and development of cucumber.


Key words: cucumber, DIR, gene family, bioinformatics, expression analysis

[1] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[2] PAN FengYing, QU JunJie, LIU LuLu, SUN DaYun, GUO ZeXi, WEI XiaoLi, WEI ShuMei, YIN Ling. Expression and Functional Analysis of Glycosyl Hydrolase Genes from Plasmopara viticola [J]. Scientia Agricultura Sinica, 2023, 56(5): 879-891.
[3] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[4] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[5] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[6] YANG HuiZhen, YANG Huan, WU ZiXuan, FAN KuoHai, YIN Wei, SUN PanPan, ZHONG Jia, SUN Na, LI HongQuan. Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa [J]. Scientia Agricultura Sinica, 2023, 56(17): 3461-3478.
[7] KONG LeHui, ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing, QIANG XiaoYu. Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight [J]. Scientia Agricultura Sinica, 2023, 56(16): 3124-3139.
[8] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[9] CHAI ALi, YANG HongMin, WANG ShaoHua, ZHAO Kun, GAO Wei, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu. Effect of Humidity on Sporulation and Release of Corynespora cassiicola and Control Technology [J]. Scientia Agricultura Sinica, 2023, 56(15): 2907-2918.
[10] YU LianWei, JIANG XingLin, YANG LingLing, WANG He, ZHANG YuYang, XIE LiNa, XIA ZiHao, LI HongLian, YANG Xue, SHI Yan. Function of Transcription Factor NbERF RAP2-1 in Cucumber Green Mottle Mosaic Virus Infection [J]. Scientia Agricultura Sinica, 2023, 56(15): 2919-2928.
[11] FENG XiangJun, WANG HongYu, YU Jing, CHI ChunYu, DING GuoHua. Overexpressing NPR1 from Arabidopsis thaliana Enhanced Resistance to Fusarium Wilt and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2023, 56(14): 2701-2712.
[12] LIANG HaiWen, LAN PingXiu, LIU QinHai, TAN GuanLin, CHEN XiaoJiao, ZHAO Yan, LI Fan. Viruses Identification and Their Gene Sequences Analysis Infecting Aucuba japonica var. variegata [J]. Scientia Agricultura Sinica, 2023, 56(10): 1893-1904.
[13] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[14] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[15] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!