Scientia Agricultura Sinica

Previous Articles    

Identification of 60 Citrus Accessions Using Target SSR-seq Technology

ZHU YanSong1, ZHANG YaFei1, CHENG Li1, YANG ShengNan1, ZHAO WanTong1,2, JIANG Dong1,2 #br#   

  1. 1Citrus Research Institute of Southwest University, Chongqing 400712; 2Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Published:2022-06-26

Abstract: 【BackgroundBud sports mutation is a DNA mutation occured in somatic meristem, it often display visible morphological and other charactistics changes different from its mother plants in branches, leaves, flowers and fruits. However, discrimating bud sports mutation from the epigenetic variation caused by environmental conditions and cultivation measures etc. external factors was still mostly depended on the morlecular fingerprint detection. ObjectiveThis study objective was to identifiy citrus bud sports mutant through Target-SSR sequencing thechology.MethodFirsly the genome of clementine mandarin (Citrus reticulata Blanco) and satsuma (Citrus unshiu Macf.), as well as GSS and EST sequences of satsuma were used to scan SSRs loci with GMATA, the highly polymorphic SSRs loci were screened out to design primers, multiplex PCR with optimized primers were amplified on 60 citrus bud sports mutants to construct high-thoughout sequencing library, the ampification products were then sequenced on illumina Minseq platform, the clean sequencing short reads were mapped to reference target sequences to find differentiated SSRs loci presented in citrus bud sports mutants.ResultA total of 77 pairs of SSR primers were designed from highly polymorphic SSRs loci. The primers pairs combination were optimized and 18 multiplex PCR amplification products were sequenced. Target SSR-seq analysis showed that the genotyping data of SSRs could divided 60 citrus accessions into two groups correspongding to sweet orange and mandarin, and mandarin group could be further subdivided into different citrus cultivar such as Orah, ponkan etc. 11 SSR loci containing mostly ATT motif were found in 7 Tarroco blood orange mutants, 8 SSR loci containing mostly TAA motif were found in 2 ‘Wu Yue Hong’ mutants and 5 navel orange, 16 SSR loci containg mostly GA motif were found in 9 Bing Tang Cheng mutants, 9 SSR loci containg mostly AAT motif were found in 2 Sha Tang Ju mutants, and 15 SSR loci with mostly AAT motif were found in 4 satsuma mutants. This study showed that Target-SSR sequecning technology provided an excellent resolving approach to discriminate citrus bud mutations.ConclusionIn this study, an effictive method for citrus bud mutant identification using Target SSR-seq technology were established, 60 citrus germplasm accessions could be discriminated. The precision and reliability of SSR genotyping information could be utilizaed in citrus germplasm resources managemant and variety intellectual property protection.



Key words: citrus, bud sports, Target SSR-seq

[1] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[2] YANG Ling, TIAN XiaoLi, GUI LianYou, WANG FuLian, ZHANG GuoHui. Interaction Mechanisms Between Bactrocera minax Odorant-Binding Protein BminOBP6 and Its Ligands [J]. Scientia Agricultura Sinica, 2023, 56(7): 1311-1321.
[3] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[4] CAO Peng, XU JianJian, LI ChuXin, WANG XinLiang, WANG ChunQing, SONG ChenHu, SONG Zhen. Real-Time Quantitative PCR Detection of Citrus Yellow Mosaic Virus and Its Spatial and Temporal Distribution in Host Plants [J]. Scientia Agricultura Sinica, 2023, 56(18): 3574-3584.
[5] YANG ShengNan, CHENG Li, TAN YueXia, ZHU YanSong, JIANG Dong. Genome Wide Association Study for Resistance to Citrus Brown Spot Disease [J]. Scientia Agricultura Sinica, 2023, 56(18): 3642-3654.
[6] BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong. Screening of the Host Factors Interacting with CP of Citrus Yellow Vein Clearing Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892.
[7] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[8] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[9] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[10] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[11] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[12] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[13] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[14] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[15] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!