Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1311-1321.doi: 10.3864/j.issn.0578-1752.2023.07.009

• PLANT PROTECTION • Previous Articles     Next Articles

Interaction Mechanisms Between Bactrocera minax Odorant-Binding Protein BminOBP6 and Its Ligands

YANG Ling1(), TIAN XiaoLi2, GUI LianYou1, WANG FuLian1, ZHANG GuoHui1()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
    2 College of Life Science, Yangtze University, Jingzhou 434025, Hubei
  • Received:2022-12-10 Accepted:2023-01-17 Online:2023-04-01 Published:2023-04-03

Abstract:

【Objective】 To explore the recognition mechanisms of BminOBP6 and its ligands, a C terminus-truncated BminOBP6 (TOBP6) was constructed in this study. Subsequently, the binding affinities of TOBP6 and the wild type protein BminOBP6 to 1-undecanol and (+)-limonene under different pH conditions were determined.【Method】 3D structure of BminOBP6 was built by homology modeling through the online software SWISS MODEL. Based on the established BminOBP6 3D model, the C terminus sequence after sixth α-helix of BminOBP6 was determined. This C terminus sequence is the sequence that will be removed from BminOBP6 in the subsequent study. Specific primers were designed to amplify the encoding sequence of BminOBP6 C terminus- truncated mutant TOBP6. Then the recombinant expression vector pET-32a/TOBP6 was constructed. Recombinant expression vectors pET-32a/TOBP6 and pET32a/BminOBP6 that has been made before in our lab were transformed into Escherichia coli cells BL21 (DE3) to express the TOBP6 and BminOBP6 recombinant proteins, respectively. Fluorescence competitive binding assays were conducted to determine the binding affinities of TOBP6 and BminOBP6 to 1-undecanol and (+)-limonene under different pH (7.4 and 5.0) conditions.【Result】 Amino acid sequence alignments revealed that BminOBP6 shared 62.6% identity with Culex quinquefasciatus CquiOBP1, and thus the 3D structure of CquiOBP1 was used as the template in the homology modeling of BminOBP6. The 3D structure of BminOBP6 indicated that the C terminus sequence after α6 of BminOBP6 is a sequence of 8 amino acid residues (D117-P124). Based on this result, the encoding sequence of TOBP6 was cloned and its recombinant expression vector pET-32a/TOBP6 was built. Recombinant expression vectors pET-32a/TOBP6 and pET32a/BminOBP6 were then transformed into E. coli cells BL21 (DE3) to express the TOBP6 and BminOBP6 recombinant proteins, respectively. The fluorescence competitive binding results showed that the binding affinity of BminOBP6 to 1-undecanol and (+)-limonene was quite strong at pH 7.4, the Ki values were 6.89 and 9.50 μmol·L-1, respectively. However, when the pH decreased to 5.0, BminOBP6 completely lost its binding capacity to 1-undecanol and exhibited an obvious decrease in binding to (+)-limonene (the Ki value increased from 9.50 μmol·L-1 to 31.26 μmol·L-1). The binding affinity of TOBP6 to 1-undecanol and (+)-limonene was completely abolished regardless of pH conditions.【Conclusion】 Changes in pH have a significant effect on the ligand binding and release of BminOBP6, and the C terminus of BminOBP6 is crucial for BminOBP6 to bind its ligands.

Key words: Bactrocera minax, odorant-binding protein (OBP), homology modeling, C terminus, prokaryotic expression, fluorescence competitive binding

Fig. 1

3D structure of BminOBP6 through homology modeling"

Fig. 2

cDNA sequence of BminOBP6 and deduced amino acid sequence he start codon is boxed; Signal peptide part is underlined; Conservative cysteine sites are circled; “*” stands for the stop codon; The green background represents cDNA of TOBP6; “→” and “←” mark positions of the upstream and downstream primers of TOBP6, respectively"

Fig. 3

SDS-PAGE analysis of expression and purification products of pET-32a/BminOBP6 and pET-32a/TOBP6"

Fig. 4

Fluorescence competitive binding property of BminOBP6 and TOBP6"

Table 1

Binding affinities of BminOBP6 and TOBP6 with odorant ligands"

BminOBP6 TOBP6
1-十一醇 1-Undecanol (+)-柠檬烯 (+)-Limonene 1-十一醇 1-Undecanol (+)-柠檬烯 (+)-Limonene
pH 7.4 IC50 (μmol·L-1) 8.13±0.24 11.20±0.53 - -
Ki (μmol·L-1) 6.89±0.20 9.50±0.45 - -
pH 5.0 IC50 (μmol·L-1) - 33.39±1.13 - -
Ki (μmol·L-1) - 31.26±1.06 - -
[1]
陈世骧, 谢蕴贞. 关于桔大实蝇的学名及其种征. 昆虫学报, 1955, 5(1): 123-126.
CHEN S X, XIE Y Z. Taxonomic notes on the Chinese citrus fly Tetradacus citri (Chen). Acta Entomologica Sinica, 1955, 5(1): 123-126. (in Chinese)
[2]
龚碧涯, 刘慧, 肖伏莲, 向敏, 刘娟, 杨水芝, 李先信, 段科平, 熊先福. 粘虫胶、食物诱芯和悬挂位置对诱杀球诱杀柑橘大实蝇的影响. 应用昆虫学报, 2019, 56(4): 840-845.
GONG B Y, LIU H, XIAO F L, XIANG M, LIU J, YANG S Z, LI X X, DUAN K P, XIONG X F. The effects of different sticky glues, food lures and hanging positions, on the effectiveness of sticky spheres for trapping adult Bactrocera (Tetradacus) minax (Enderlein). Chinese Journal of Applied Entomology, 2019, 56(4): 840-845. (in Chinese)
[3]
XIA Y L, MA X L, HOU B H, OUYANG G C. A review of Bactrocera minax (Diptera: Tephritidae) in China for the purpose of safeguarding. Advances in Entomology, 2018, 6: 35-61.

doi: 10.4236/ae.2018.62005
[4]
李可, XIA Y L, 樊永亮, 刘同先. 柑橘大实蝇Bactrocera minax (Enderlein)引诱剂研究概况. 应用昆虫学报, 2019, 56(3): 426-432.
LI K, XIA Y L, FAN Y L, LIU X T. Recent advances in research on attractants for the Chinese citrus fly, Bactrocera minax (Enderlein). Chinese Journal of Applied Entomology, 2019, 56(3): 426-432. (in Chinese)
[5]
JUSTICE R W, BIESSMANN H, WALTER M F, DIMITRATOS S D, WOODS D F. Genomics spawns novel approaches to mosquito control. BioEssays, 2010, 25(10): 1011-1020.

doi: 10.1002/(ISSN)1521-1878
[6]
ELGAR M A, ZHANG D, WANG Q K, WITTWER B, PHAM H T, JOHNSON T L, FREELANCE C B, COQUILLEAU M. Insect antennal morphology: The evolution of diverse solutions to odorant perception. The Jale Journal of Biology and Medicine, 2018, 91(4): 457-469.
[7]
LEAL W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013, 58: 373-391.

doi: 10.1146/annurev-ento-120811-153635 pmid: 23020622
[8]
HALLEM E A, DAHANUKAR A, CARLSON J R. Insect odor and taste receptors. Annual Review of Entomology, 2006, 51: 113-135.

pmid: 16332206
[9]
DE BRUYNE M, BAKER T C. Odor detection in insects: Volatile codes. Journal of Chemical Ecology, 2008, 34(7): 882-897.

doi: 10.1007/s10886-008-9485-4 pmid: 18535862
[10]
VOGT R G, MILLER N E, LITVACK R, FANDINO R A, SPARKS J, STAPLES J, FRIEDMAN R, DICKENS J C. The insect SNMP gene family. Insect Biochemistry and Molecular Biology, 2009, 39(7): 448-456.

doi: 10.1016/j.ibmb.2009.03.007 pmid: 19364529
[11]
吴帆, 张莉, 邱一蕾, 李红亮. 昆虫嗅觉结合蛋白研究进展. 昆虫学报, 2021, 64(4): 523-535.
WU F, ZHANG L, QIU Y L, LI H L. Research progress of olfactory binding proteins in insects. Acta Entomologica Sinica, 2021, 64(4): 523-535. (in Chinese)
[12]
白鹏华, 王冰, 张仙红, 王桂荣. 昆虫气味受体的研究方法与进展. 昆虫学报, 2022, 65(3): 364-385.
BAI P H, WANG B, ZHANG X H, WANG G R. Research methods and advances of odorant receptors in insects. Acta Entomologica Sinica, 2022, 65(3): 364-385. (in Chinese)
[13]
HOFFMAN S A, ARAVIND L, VELMURUGAN S. Female Anopheles gambiae antennae: Increased transcript accumulation of the mosquito-specific odorant-binding-protein OBP2. Parasites & Vectors, 2012, 5: 27.
[14]
PELOSI P, IOVINELLA I, ZHU J, WANG G R, DANI F R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biological Reviews, 2018, 93(1): 184-200.

doi: 10.1111/brv.2018.93.issue-1
[15]
XU P X. A Drosophila OBP required for pheromone signaling. Science, 2005, 310(5749): 798-799.

doi: 10.1126/science.1121249
[16]
BIESSMANN H, ANDRONPOULOU E, BIESSMANN M R, DOURSI V, DIMITRATOS S D, ELIOPOULOS E, GUERIN P M, LATROU K, JUSTICE R W, KROBER T, MARINOTTI O, TSITOURA P, WOODS D F, WALTER M F. The Anopheles gambiae odorant-binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS ONE, 2010, 5(3): e9471.

doi: 10.1371/journal.pone.0009471
[17]
ZHANG R B, WANG B, GROSSI G, FALABELLA P, LIU Y, YAN S C, LU J, XI J H, WANG G R. Molecular basis of alarm pheromone detection in aphids. Current Biology, 2017, 27: 55-61.

doi: S0960-9822(16)31198-8 pmid: 27916525
[18]
ZHOU J J, ROBERTSON G, HE X L, DUFOUR S, HOOPER A M, PICKETT J A, KEEP N H, FIELD L M. Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. Journal of Molecular Biology, 2009, 389(3): 529-545.

doi: 10.1016/j.jmb.2009.04.015
[19]
LAGARDE A, SPINELLI S, TEGONI M, HE X L, FIELD L, ZHOU J J, CAMBILLAU C. The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site. Journal of Molecular Biology, 2011, 414(3): 401-412.

doi: 10.1016/j.jmb.2011.10.005
[20]
SANDLER B H, NIKONOVA L, LEAL W S, CLARDY J. Sexual attraction in the silkworm moth: Structure of the pheromone- binding-protein-bombykol complex. Chemistry & Biology, 2000, 7(2): 143-151.

doi: 10.1016/S1074-5521(00)00078-8
[21]
LAUTENSCHLAGER C, LEAL W S, CLARDY J. Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochemical and Biophysical Research Communications, 2005, 335: 1044-1050.

doi: 10.1016/j.bbrc.2005.07.176
[22]
GONG Y M, PACE T C S, CASTILLO C, BOHNE C, O’NEILL M A, PLETTNER E. Ligand-interaction kinetics of the pheromone-binding protein from the gypsy moth, L. dispar: Insights into the mechanism of binding and release. Chemistry & Biology, 2009, 16(2): 162-172.

doi: 10.1016/j.chembiol.2009.01.005
[23]
MOHANTY S, ZUBKOV S, GRONENBORN A M. The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. Journal of Molecular Biology, 2004, 337(2): 443-451.

doi: 10.1016/j.jmb.2004.01.009
[24]
ZUBKOV S, GRONENBORN A M, BYEON I J L, MOHANTY S. Structural consequences of the pH-induced conformational switch in A. polyphemus pheromone-binding protein: Mechanisms of ligand release. Journal of Molecular Biology, 2005, 354(5): 1081-1090.

doi: 10.1016/j.jmb.2005.10.015
[25]
XU X Z, XU W, RAYO J, ISHIDA Y, LEAL W S, AMES J B. NMR structure of navel orange worm moth pheromone-binding protein (AtraPBP1): Implications for pH-sensitive pheromone detection. Biochemistry, 2010, 49(7): 1469-1476.

doi: 10.1021/bi9020132
[26]
WOGULIS M, MORGAN T, ISHIDA Y, LEAL W S, WILSON D K. The crystal structure of an odorant binding protein from Anopheles gambiae: Evidence for a common ligand release mechanism. Biochemical and Biophysical Research Communications, 2006, 339(1): 157-164.

doi: 10.1016/j.bbrc.2005.10.191
[27]
LEITE N R, KROGH R, XU W, ISHIDA Y, IULEK J, LEAL W S, OLIVA G. Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”. PLoS ONE, 2009, 4(11): e8006.

doi: 10.1371/journal.pone.0008006
[28]
MAO Y, XU X Z, XU W, ISHIDA Y, LEAL W S, AMES J B, CLARDY J. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 19102-19107.
[29]
AHMED T, ZHANG T, WANG Z, HE K, BAI S. C-terminus methionene specifically involved in binding corn odorants to odorant binding protein4 in Macrocentrus cingulum. Frontiers in Physiology, 2017, 8: 62.
[30]
LEAL W S, CHEN A M, ISHIDA Y, CHIANG V P, ERICKSON M L, MORGAN T I, TSURUDA J M. Kinetics and molecular properties of pheromone binding and release. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15): 5386-5391.
[31]
ZHENG J G, YANG M T, DONG K, ZHANG J B, WANG H L, XIE M J, WU W, ZHANG Y J, CHEN Z Z. Structural insights into the ligand-binding and -releasing mechanism of Helicoverpa armigera pheromone-binding protein PBP1. International Journal of Molecular Sciences, 2022, 23(3): 1190.

doi: 10.3390/ijms23031190
[32]
CHEN J, YANG L, TIAN X L, GUI L Y, WANG F L, ZHANG G H. Functional characterization of two antenna-enriched odorant-binding proteins from Bactrocera minax (Diptera: Tephritidae). Journal of Economic Entomology, 2021, 114(6): 2361-2369.

doi: 10.1093/jee/toab199
[33]
RAMACHANDRAN G N, RAMAKRISHNAN C, SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 1963, 7: 95-99.

pmid: 13990617
[34]
GUEX N, PEITSCH M C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15): 2714-2723.

doi: 10.1002/(ISSN)1522-2683
[35]
SCHWEDE T, KOPP J, GUEX N, PEITSCH M C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 2003, 31(13): 3381-3385.

doi: 10.1093/nar/gkg520 pmid: 12824332
[36]
ZHANG T T, MEI X D, FENG J N, BERG B G, ZHANG Y J, GUO Y Y. Characterization of three pheromone-binding proteins (PBPs) of Helicoverpa armigera (Hübner) and their binding properties. Journal of Insect Physiology, 2012, 58(7): 941-948.

doi: 10.1016/j.jinsphys.2012.04.010
[37]
LIU Z, LIANG X F, XU L, KEESEY I W, LEI Z R, SMAGGHE G, WANG J J. An antennae-specific odorant-binding protein is involved in Bactrocera dorsalis olfaction. Frontiers in Ecology and Evolution, 2020, 8: 63.

doi: 10.3389/fevo.2020.00063
[38]
LEAL W S. Duality monomer-dimer of the pheromone-binding protein from Bombyx mori. Biochemical and Biophysical Research Communications, 2000, 268(2): 521-529.

doi: 10.1006/bbrc.2000.2158
[39]
DAMBERGER F F, MICHEL E, ISHIDA Y, LEAL W S, WÜTHRICH K. Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18680-18685.
[40]
VAN DER GOOT F G, GONZÁLEZ-MAÑAS J M, LAKEY J H, PATTUS F. A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature, 1991, 354(6352): 408-410.

doi: 10.1038/354408a0
[41]
WANG J, MURPHY E J, NIX J C, JONES D N M. Aedes aegypti odorant binding protein 22 selectively binds fatty acids through a conformational change in its C-terminal tail. Scientific Reports, 2020, 10(1): 3300.

doi: 10.1038/s41598-020-60242-9
[42]
ZIEMBA B P, MURPHY E J, EDLIN H T, JONES D N M. A novel mechanism of ligand binding and release in the odorant binding protein 20 from the malaria mosquito Anopheles gambiae. Protein Science, 2013, 22: 11-21.

doi: 10.1002/pro.v22.1
[43]
GONG Y M, TANG H, BOHNE C, PLETTNER E. Binding conformation and kinetics of two pheromone-binding proteins from the Gypsy moth Lymantria dispar with biological and nonbiological ligands. Biochemistry, 2010, 49(4): 793-801.

doi: 10.1021/bi901145a
[1] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[2] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[3] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[4] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[5] WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031.
[6] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[7] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[8] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[9] WANG Hui,CHAI ZhiXin,ZHU JiangJiang,ZHONG JinCheng,ZHANG ChengFu,Xin JinWei. Cloning and Identification of Long-Chain Non-Coding RNA Linc24063 and Its Correlation with the Expression Level of miRNAs in Yak [J]. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547.
[10] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[11] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[12] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[13] ZHI Shuang, REN YanHong, TANG Xing, XU FengXiang, WANG ChuanHong, ZHAO AiChun, WANG XiLing. Molecular Cloning and Expression Analysis of Genes MaGDHs Encoding Glutamate Dehydrogenase in Mulberry [J]. Scientia Agricultura Sinica, 2018, 51(4): 758-769.
[14] ZHENG XiuPing, DING HaoJie, GUO XiaoLu, YANG Yi, HUANG Yan, CHEN XueQiu, ZHOU QianJin, DU AiFang. Characteristics of Hc-daf-22 Gene from Haemonchus contortus: Crokaryotic Expression and Its Enzymatic Activity [J]. Scientia Agricultura Sinica, 2017, 50(8): 1535-1542.
[15] WEI YuanJie, WANG YaMei, HUANG LiNa, LIU Ning, ZHAO Jie, AI XinYu, LIU XiaoNing. Cloning, Prokaryotic Expression and Preparation of the Polyclonal Antibody Against CYP6CY3 from Aphis gossypii [J]. Scientia Agricultura Sinica, 2017, 50(7): 1351-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!