Scientia Agricultura Sinica

Previous Articles    

Effect of Different Rootstocks on the Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits

HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei   

  1. Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China / Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083
  • Published:2022-01-18

Abstract: Objective】Flavonoids are important metabolites of wine grapes, which have important effects on the qualities of the grape fruits and their wines. In this study, the effects of different rootstocks on the physicochemical parameters and flavonoid substances of Tannat (Vitis vinifera L. cv.) grapes were studied to provide the theoretical basis for the selection and utilization of rootstocks.MethodIn the present research, Tannat shoots were used as scions and were greenwood grafted on four different kinds of rootstocks, including 1103P, 101-14, SO4 and Beta. On the bases of the analysis of the basic physicochemical parameters ( total soluble solid content, titratable acid, pH, 100-berry weights) of the commercial mature grape berries of these grapevines grafted on different rootstocks, the compositions and contents of the flavonoids in the corresponding grape berries were detected by using high performance liquid chromatography-mass spectrometry (HPLC-MS), in the three vintages of 2016, 2017 and 2019.Result】 The results showed that rootstocks had little effect on the 100-berry weights of the Tannat grapes; the contents of the total soluble solids were higher in the combination of Tannat/101-14, as well as the own-rooted Tannat; the titratable acids of the grape juice of the Tannat/101-14 and the Tannat/Beta combinations were higher than the own-rooted Tannat grapes. In the part of flavonoids, the contents of anthocyanins and flavonols in the Tannat/SO4 combination was the lowest in all of these combinations; the contents of anthocyanins and flavonols in the Tannt/101-14 combination and the own-rooted Tannat were higher than those of other combinations; the content of flavanols in the skins of the Tannat/101-14 combination was higher. In addition, the contents of anthocyanins and flavonols in the Tannt/11103P combination was lower, but the contents of flavanols in the skins of the Tannat/1103P combination was relatively high. Besides, the results of two-factor ANOVA of the year and the rootstock showed that rootstocks had significant effects on all types of anthocyanins. All the four rootstocks showed a tendency to reduce the anthocyanins of peonidin, petunitin, malvidin, non-acylation, acetylation and coumaric acylation. In the mature fruits, quercetins were the most abundant flavonols, followed by myricetins, while syringetins and laricitrins accounted for a smaller proportion. Rootstocks had a significant effect on the myricetins and laricitrins, which reduced the contents of myricetin and laricitrin to different degrees. Through the establishment of OPLS-DA (Orthogonal Partial Least Squares Discrimination Analysis) model, we found that the Tannat/101-14 combination was mainly distinguished by the malvidin anthocyanin compared with the own-rooted grapes. The main difference compounds of Tannat/Beta combination were anthocyanins of malvidin, delphinidin and acetylation, the total flavanols and quercetin compounds. The difference compounds of the Tannat/SO4 combination were anthocyanins of malvidin, delphinidin, acetylation, and the quercetins. The Tannat/1103P combination mainly consists of acetylated anthocyanins and quercetins.ConclusionIn Beijing region, all the four rootstocks (1103P, SO4, Beta, 101-14) showed a tendency to reduce the flavonoid contents, including anthocyanins of peonidin, petunitin, malvidin, non-acylation, acetylation, coumaric acylation quercetins and laricitrins. The rootstock '101-14' was beneficial to the accumulation of anthocyanins, flavonols and flavanols in fruit skins, which was conducive to the improvement of the wine quality, so it was recommended to be used. However, Tannat grapes grafted with SO4 had less flavonoid accumulation and was not recommended to be used.


Key words: wine grape,  , Tannat, rootstock, flavonoid, high-performance liquid chromatography-mass spectrometry (HPLC-MS)

[1] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[2] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[3] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[4] GAO ZiYuan, HU JingAng, ZHANG BeiBei, GONG Biao. Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization [J]. Scientia Agricultura Sinica, 2023, 56(14): 2761-2775.
[5] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[6] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[9] SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420.
[10] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[11] ZHU ShiPing,WANG FuSheng,CHEN Jiao,YU Xin,YU Hong,LUO GuoTao,HU Zhou,FENG JinYing,ZHAO XiaoChun,HONG QiBin. Seed Traits and Seedling Performances of Different Types of Citrus Rootstock [J]. Scientia Agricultura Sinica, 2020, 53(3): 585-599.
[12] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[13] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[14] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[15] DONG Jun, WANG Jing, LIANG Wei, MA BaiQuan, DONG LiJuan, MA FengWang, FU XuanChang, LI CuiYing. QTL Fine Mapping and Candidate Gene Prediction for Growth     Traits in G.41×Malus sieversii [J]. Scientia Agricultura Sinica, 2018, 51(11): 2155-2163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!