Scientia Agricultura Sinica

Previous Articles    

Identification of wheat circular RNAs responsive to drought stress

LI Ning, LIU Kun, LIU TongTong, SHI YuGang, WANG ShuGuang, YANG JinWen, SUN DaiZhen   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030800, Shanxi
  • Online:2022-09-29 Published:2022-09-29

Abstract: 【Objective】Drought is one of the foremost abiotic stress limiting global wheat production. Exploring the molecular mechanism of wheat response to drought stress have great significance in wheat molecular breeding. Circular RNAs (circRNAs) have been proved to play an important role in the process of plants tolerance to environmental stresses. Therefore, identifying circRNAs involved in drought stress response will help to construct a regulatory network of wheat drought tolerance, and lay a foundation for analyzing the drought resistance mechanism in wheat. 【Method】In this study, two wheat varieties (Zhoumai13 and Jimai38) with significant differences in drought resistance were used and circRNA-seq was performed on their root samples under well-watered and drought conditions. Differentially expressed circRNAs related to drought stress response were screened based on the identified circRNAs and their microRNAs (miRNAs) targets were predicted. Further, potential circRNA-miRNA-mRNA regulatory modules related to wheat drought stress response were constructed according to the expression patterns of miRNAs and their target genes under drought stress. 【Result】A total of 1409 wheat circRNAs were identified, most of which (68.91%) were exonic circRNAs. Only 133 circRNAs were simultaneously identified in both varieties. A total of 239 differentially expressed circRNAs were identified under drought stress, of which 138 circRNAs were specifically differentially expressed in the drought-resistant variety Zhoumai 13 (ZM13), and 19 circRNAs were differentially expressed simultaneously in both varieties. Besides, 34 targeted miRNAs and 1408 miRNA target genes were predicted. Based on the expression patterns of these differentially expressed circRNAs, targeted miRNAs, and miRNA target genes, five potential circRNA-miRNA-mRNA regulatory modules centered on tae-miR9664-3p, tae-miR1122b-3p, tae-miR9662a-3p, tae-miR6197-5p and tae-miR1120c-5p in response to drought stress were screened. 【Conclusion】Wheat circRNAs have obvious specificity in different cultivars and different expression patterns among different drought-tolerant wheat cultivars. A total of 239 wheat circRNAs and five potential circRNA-miRNA-mRNA regulatory modules in response to drought stress were identified in the present study.

Key words: common wheat, circular RNAs, drought stress, microRNAs

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] TANG HuaPing, CHEN HuangXin, LI Cong, GOU LuLu, TAN Cui, MU Yang, TANG LiWei, LAN XiuJin, WEI YuMing, MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[10] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[11] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[12] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[13] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[14] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[15] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!