Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (4): 834-849.doi: 10.3864/j.issn.0578-1752.2026.04.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Organic Materials on Soil Microbial Biomass and Its Acidity Regulation Mechanism

WEN YuBin1,2(), BAI ShanShan1,2, CAI ZeJiang3(), SUN Nan3, XU MingGang1,2()   

  1. 1 College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University/Soil Health Laboratory in Shanxi Province, Taiyuan 030031
    3 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arable Land in China, Beijing 100081
  • Received:2025-04-08 Online:2026-02-10 Published:2026-02-10
  • Contact: CAI ZeJiang, XU MingGang

Abstract:

【Objective】This study explored the effects of the application of organic materials on soil pH, microbial biomass and microbial entropy, so as to provide a scientific basis for the improvement of arable land quality.【Method】Based on the meta-analysis, 1 296 sets of data from 224 literatures around the world were integrated to comprehensively analyze the differences in soil pH, microbial biomass carbon (MBC), nitrogen (MBN), microbial entropy carbon (qMBC), and nitrogen (qMBN) under the conditions of organic material application measures (type, application amount, and application years), climate factors (annual average temperature, precipitation), and initial soil properties (pH value, organic carbon content).【Result】After the application of organic materials, the soil pH value increased significantly by 0.23 units, increased by 4.0%, while MBC, MBN, qMBC and qMBN increased by 46.8%, 54.0%, 16.4% and 14.9%, respectively. Compared with chemical fertilizer, soil pH, MBC, MBN, qMBC and qMBN increased by 5.9%, 53.4%, 13.2%, 79.9% and 38.2%, respectively. The effect of increasing soil pH was the best when the amount of manure application was more than 10 t∙hm-2∙a-1 and the application period exceeded 10 years; however, the soil microbial biomass index could be significantly improved when the amount of fertilizer was more than 40 t∙hm-2∙a-1 and the application period was 3-10 years. Under the climate conditions of annual average temperature >16 ℃ and annual precipitation >1 200 mm, the effect of applying organic materials on improving soil pH was better, especially in soils with initial soil pH value of 4.5-5.5 and organic carbon content (SOC) >12 g∙kg-1; however, under the climate conditions of 8-16 ℃ annual average temperature and annual precipitation <600 mm, the application of organic materials had better effect on the improvement of MBC, MBN, qMBC and qMBN in weakly alkaline soil (pH>7.5) with SOC≤12 g∙kg-1. The random forest model showed that the effects of applying organic materials on soil pH, MBC, MBN and microbial entropy were affected by soil initial pH and SOC, application measures of organic materials and climate conditions, respectively. The partial least squares path model further proved that the application measures of organic materials, climate conditions and initial soil properties affect microbial biomass and microbial entropy by adjusting pH value.【Co nclusion】Organic materials most effectively elevated soil pH in acidic with high-SOC soils (pH≤5.5, SOC>12 g∙kg-1), which enhanced microbial biomass and microbial quotients in alkaline with low-SOC soils (pH>7.5, SOC≤12 g∙kg-1). The regulation of soil pH, microbial carbon and nitrogen, and microbial quotients was primarily controlled by initial soil properties, organic material application measures, and climatic conditions.

Key words: organic materials, soil pH, soil microbial biomass, soil microbial quotient, meta-analysis

Fig. 1

Response ratio distribution of soil pH (a), soil microbial biomass carbon (b), soil microbial biomass nitrogen (c), microbial quotient carbon (d) and microbial quotient nitrogen (e) M and SE represent the average value and standard error of the change response ratio, respectively"

Fig. 2

The total effect of organic material application on soil pH (a) and the effect of organic material application on soil pH under different application methods (b), and soil properties and climatic conditions (c) The values in brackets in Fig.a are the improvement range of each index and the number of samples after the application of organic materials. In Fig.b and Fig.c, the value in brackets is the sample size of each indicator, and the dotted line indicates that the effect value is 0. Red circles represent positive effects, blue circles represent negative effects, and white circles represent insignificant effects. The same as below"

Fig. 3

The total effect of organic material application on soil microbial biomass carbon (a) and the effect of organic material application on soil microbial biomass carbon under different application methods (b), and soil properties and climatic conditions (c)"

Fig. 4

The total effect of organic material application on soil microbial quotient carbon (a) and the effect of organic material application on soil microbial quotient carbon under different application methods (b), and soil properties and climatic conditions (c)"

Fig. 5

The total effect of organic material application on soil microbial biomass nitrogen (a) and the effect of organic material application on soil microbial biomass nitrogen under different application methods (b), and soil properties and climatic conditions (c)"

Fig. 6

The total effect of organic material application on soil microbial quotient nitrogen (a) and the effect of organic material application on soil microbial quotient nitrogen under different application methods (b), and soil properties and climatic conditions (c)"

Fig. 7

Contribution rate of various influencing factors to soil pH (a), MBC (b), MBN (d), qMBC(c) and qMBN(e) after application of organic materials R2 indicates the proportion of variance explained by the model in the total variance, while * and ** indicate that the correlation reaches 0.05 and 0.01 significant levels, respectively"

Fig. 8

The partial least squares path model (PLS-PM) is used to investigate the effects of various factors on soil pH, microbial biomass (a), and microbial quotient (b) The model discussed the effects of organic materials, climate, management measures, and initial soil properties on soil pH, soil microbial biomass and soil microbial quotient, as well as the path of soil pH effect on microbial effect. The red line and blue line respectively indicate the positive and negative significant relationship, and the gray dotted line indicates that the relationship is not significant; the thickness of the line indicates the strength of causality, supplemented by standardized path coefficient. GOF represents the goodness of fit of the whole model. *: P<0.05;**: P<0.01;***: P<0.001"

[1]
GU B J, CHEN D L, YANG Y, VITOUSEK P, ZHU Y G. Soil-food- environment-health nexus for sustainable development. Research, 2021, 2021: 9804807.
[2]
HEI Z W, PENG Y T, HAO S L, LI Y M, YANG X, ZHU T B, MÜLLER C, ZHANG H Y, HU H W, CHEN Y L. Full substitution of chemical fertilizer by organic manure decreases soil N2O emissions driven by ammonia oxidizers and gross nitrogen transformations. Global Change Biology, 2023, 29(24): 7117-7130.

doi: 10.1111/gcb.v29.24
[3]
NING Q, CHEN L, JIA Z J, ZHANG C Z, MA D H, LI F, ZHANG J B, LI D M, HAN X R, CAI Z J, HUANG S M, LIU W Z, ZHU B, LI Y. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems & Environment, 2020, 293: 106837.

doi: 10.1016/j.agee.2020.106837
[4]
宋长青, 吴金水, 陆雅海, 沈其荣, 贺纪正, 黄巧云, 贾仲君, 冷疏影, 朱永官. 中国土壤微生物学研究10年回顾. 地球科学进展, 2013, 28(10): 1087-1105.

doi: 10.11867/j.issn.1001-8166.2013.10.1087
SONG C Q, WU J S, LU Y H, SHEN Q R, HE J Z, HUANG Q Y, JIA Z J, LENG S Y, ZHU Y G. Advances of soil microbiology in the last decade in China. Advances in Earth Science, 2013, 28(10): 1087-1105. (in Chinese)

doi: 10.11867/j.issn.1001-8166.2013.10.1087
[5]
ZHONG W H, GU T, WANG W, ZHANG B, LIN X G, HUANG Q R, SHEN W S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 2010, 326(1): 511-522.

doi: 10.1007/s11104-009-9988-y
[6]
REN F L, SUN N, XU M, ZHANG X B, WU L H, XU M G. Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis. Soil and Tillage Research, 2019, 194: 104291.

doi: 10.1016/j.still.2019.06.008
[7]
KIPROTICH K, MUEMA E, WEKESA C, NDOMBI T, MUOMA J, OMAYIO D, OCHIENO D, MOTSI H, MNCEDI S, TARUS J. Unveiling the roles, mechanisms and prospects of soil microbial communities in sustainable agriculture. Discover Soil, 2025, 2(1): 10.

doi: 10.1007/s44378-025-00037-4
[8]
毛妍婷, 刘宏斌, 陈安强, 杜彩艳, 郭树芳, 雷宝坤. 长期施用有机肥对减缓菜田耕层土壤酸化的影响. 生态环境学报, 2020, 29(9): 1784-1791.

doi: 10.16258/j.cnki.1674-5906.2020.09.010
MAO Y T, LIU H B, CHEN A Q, DU C Y, GUO S F, LEI B K. Effects of long-term application of organic fertilizers on reducing soil acidification of plough layer in vegetable fields. Ecology and Environmental Sciences, 2020, 29(9): 1784-1791. (in Chinese)
[9]
冶赓康, 俄胜哲, 袁金华, 赵天鑫, 路港滨, 张鹏, 刘雅娜. 施用不同有机物料对作物产量及灌漠土磷组分的影响. 干旱地区农业研究, 2025, 43(1): 91-102.
YE G K, YUAN J H, ZHAO T X, LU G B, ZHANG P, LIU Y N. Effects of different organic materials returning on crop yield and phosphorus composition in irrigated desert soil. Agricultural Research in the Arid Areas, 2025, 43(1): 91-102. (in Chinese)
[10]
MALEKI S, BEHESHTI-ALAGHA A, RANJBAR F, SHARIFI R. Impact of different co-composted poultry manures on the chemical and biological quality of the calcareous soil. International Journal of Environmental Science and Technology, 2023, 20(11): 12041-12052.

doi: 10.1007/s13762-023-05189-w
[11]
宋鉴恒, 黄婧宇, 郭欣玉, 宋佳杰, 黄禹铭, 王晨瑜, 冯永忠, 任广鑫, 王兴. 秸秆还田与化肥配施对冬小麦土壤微生物量及化学计量特征和微生物熵的影响. 环境科学, 2025, 46(6): 3957-3964.
SONG J H, HUANG J Y, GUO X Y, SONG J J, HUANG Y M, WANG C Y, FENG Y Z, REN G X, WANG X. Influence of straw return and fertilizer matching on microbial quantity and stoichiometric characteristics and microbial entropy of winter wheat soils. Environmental Science, 2025, 46(6): 3957-3964. (in Chinese)

doi: 10.1021/es204007t
[12]
SHEN Z, HAN T F, HUANG J, LI J W, DABA N A, GILBERT N, KHAN M N, SHAH A, ZHANG H M. Soil organic carbon regulation by pH in acidic red soil subjected to long-term liming and straw incorporation. Journal of Environmental Management, 2024, 367: 122063.

doi: 10.1016/j.jenvman.2024.122063
[13]
唐海明, 李超, 肖小平, 汤文光, 程凯凯, 潘孝晨, 汪柯. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响. 应用生态学报, 2019, 30(4): 1335-1343.

doi: 10.13287/j.1001-9332.201904.014
TANG H M, LI C, XIAO X P, TANG W G, CHENG K K, PAN X C, WANG K. Effects of different manure nitrogen input ratio on rhizosphere soil microbial biomass carbon, nitrogen and microbial quotient in double-cropping rice field. Chinese Journal of Applied Ecology, 2019, 30(4): 1335-1343. (in Chinese)

doi: 10.13287/j.1001-9332.201904.014
[14]
GU Y F, ZHANG X P, TU S H, LINDSTRÖM K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 2009, 45(3): 239-246.

doi: 10.1016/j.ejsobi.2009.02.005
[15]
ZHAO X, HE C, LIU W S, LIU W X, LIU Q Y, BAI W, LI L J, LAL R, ZHANG H L. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis. Global Change Biology, 2022, 28(1): 154-166.

doi: 10.1111/gcb.v28.1
[16]
MOTAVALLI P P, PALM C A, PARTON W J, ELLIOTT E T, FREY S D. Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies. Soil Biology and Biochemistry, 1995, 27(12): 1589-1599.

doi: 10.1016/0038-0717(95)00082-P
[17]
WAKSMAN S A, STEVENS K R. A critical study of the methods for determining the nature and abundance of soil organic matter. Soil Science, 1930, 30(2): 97-116.

doi: 10.1097/00010694-193008000-00002
[18]
KABAŁA C, MUSZTYFAGA E, GAŁKA B, ŁABUŃSKA D, MAŃCZYŃSKA P. Conversion of soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: conclusions for soil management, environmental monitoring, and international soil databases. Polish Journal of Environmental Studies, 2016, 25(2): 647-653.

doi: 10.15244/pjoes/61549
[19]
张冠华, 牛俊, 易亮, 孙宝洋, 李建明, 肖海. 不同植茶年限土壤-微生物生物量碳氮磷化学计量特征. 应用生态学报, 2023, 34(4): 969-976.

doi: 10.13287/j.1001-9332.202304.015
ZHANG G H, NIU J, YI L, SUN B Y, LI J M, XIAO H. Ecological stoichiometry of soil and microbial biomass carbon, nitrogen and phosphorus in tea plantations with different ages. Chinese Journal of Applied Ecology, 2023, 34(4): 969-976. (in Chinese)

doi: 10.13287/j.1001-9332.202304.015
[20]
李圆宾, 李鹏, 王舒华, 徐璐瑶, 邓建军, 焦加国. 稻麦轮作体系下有机肥施用对作物产量和土壤性质影响的整合分析. 应用生态学报, 2021, 32(9): 3231-3239.

doi: 10.13287/j.1001-9332.202109.024
LI Y B, LI P, WANG S H, XU L Y, DENG J J, JIAO J G. Effects of organic fertilizer application on crop yield and soil properties in rice-wheat rotation system: A meta-analysis. Chinese Journal of Applied Ecology, 2021, 32(9): 3231-3239. (in Chinese)
[21]
韩天富, 柳开楼, 赵彦锋, 陈杰. Meta分析评估无机改良剂对酸性农田土壤pH的影响. 土壤与作物, 2025, 14(1): 25-33.
HAN T F, LIU K L, ZHAO Y F, CHEN J. Variation of soil pH in acidic farmland soil response to inorganic amendments: A meta- analysis. Soil and Crop, 2025, 14(1): 25-33. (in Chinese)
[22]
ZHOU R R, LIU Y, DUNGAIT J A J, KUMAR A, WANG J S, TIEMANN L K, ZHANG F S, KUZYAKOV Y, TIAN J. Microbial necromass in cropland soils: a global meta-analysis of management effects. Global Change Biology, 2023, 29(7): 1998-2014.

doi: 10.1111/gcb.16613 pmid: 36751727
[23]
YIN M H, MA Y L, KANG Y X, JIA Q, QI G P, WANG J H, YANG C K, YU J X. Optimized farmland mulching improves alfalfa yield and water use efficiency based on meta-analysis and regression analysis. Agricultural Water Management, 2022, 267: 107617.

doi: 10.1016/j.agwat.2022.107617
[24]
HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150.

doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[25]
CURTIS P S, WANG X Z. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113(3): 299-313.

doi: 10.1007/s004420050381
[26]
NIU L G, HAO J M, ZHANG B Z, NIU X S. Influences of long-term fertilizer and tillage management on soil fertility of the North China Plain. Pedosphere, 2011, 21(6): 813-820.

doi: 10.1016/S1002-0160(11)60185-9
[27]
郭慧婷, 王晋峰, 孙楠, 蒯雁, 范志勇, 徐明岗. 云南省南涧县植烟土壤pH和有效磷的时空变化特征. 中国土壤与肥料, 2023(11): 9-15.
GUO H T, WANG J F, SUN N, KUAI Y, FAN Z Y, XU M G. Spatial-temporal variation of pH and Olsen-P in tobacco growing soil in Nanjian county, Yunnan Province. Soil and Fertilizer Sciences in China, 2023(11): 9-15. (in Chinese)
[28]
申梦雪, 郝芮, 刘新伟, 危万浩, 操云飞, 舒胡佳, 郝宗宇, 王沪玉, 王玲, 史志华. 化肥减量配施秸秆和有机肥对酸化土壤改良及侵蚀阻控的影响. 水土保持学报, 2024, 38(6): 333-342.
SHEN M X, HAO R, LIU X W, WEI W H, CAO Y F, SHU H J, HAO Z Y, WANG H Y, WANG L, SHI Z H. Effects of chemical fertilizer reduction combined with straw and organic fertilizer application on soil acidification mitigation and erosion control. Journal of Soil and Water Conservation, 2024, 38(6): 333-342. (in Chinese)

doi: 10.1080/00224561.1983.12436315
[29]
李文芳, 卜晓英, 黄美娥, 田春莲. 土壤腐殖质的降解及其结构. 安徽农业科学, 2005, 33(3): 494-495.
LI W F, BU X Y, HUANG M E, TIAN C L. Elementary exploration of separation, extraction and structural analysis of soil humus. Journal of Anhui Agricultural Sciences, 2005, 33(3): 494-495. (in Chinese)
[30]
赵彤, 闫浩, 蒋跃利, 黄懿梅, 安韶山. 黄土丘陵区植被类型对土壤微生物量碳氮磷的影响. 生态学报, 2013, 33(18): 5615-5622.
ZHAO T, YAN H, JIANG Y L, HUANG Y M, AN S S. Effects of vegetation types on soil microbial biomass C, N, P on the Loess Hilly Area. Acta Ecologica Sinica, 2013, 33(18): 5615-5622. (in Chinese)

doi: 10.5846/stxb
[31]
赵彤, 蒋跃利, 闫浩, 黄懿梅. 土壤氨化过程中微生物作用研究进展. 应用与环境生物学报, 2014, 20(2): 315-321.
ZHAO T, JIANG Y L, YAN H, HUANG Y M. Research advances on microbial function in soil ammonifying process. Chinese Journal of Applied and Environmental Biology, 2014, 20(2): 315-321. (in Chinese)

doi: 10.3724/SP.J.1145.2014.00315
[32]
王梦洁, 蒋文婷, 徐有祥, 刘玉学, 吕豪豪, 汪玉瑛, 杨生茂, 何莉莉, 蔡延江. 长期生物炭添加对稻田土壤细菌和真菌反硝化N2O排放的影响. 环境科学, 2024, 45(8): 4923-4931.
WANG M J, JIANG W T, XU Y X, LIU Y X, H H, WANG Y Y, YANG S M, HE L L, CAI Y J. Effects of long-term biochar addition on denitrification N2O emissions from bacteria and fungi in paddy soil. Environmental Science, 2024, 45(8): 4923-4931. (in Chinese)
[33]
WANG D, HE N P, WANG Q, Y L, WANG Q F, XU Z W, ZHU J X. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China. Pedosphere, 2016, 26(3): 399-407.

doi: 10.1016/S1002-0160(15)60052-2
[34]
LEHMANN J, KLEBER M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68.

doi: 10.1038/nature16069
[35]
莫艳芳, 申云鑫, 贺彪, 施竹凤, 唐加菜, 杨童雨, 翟恒, 韩天华, 陈齐斌, 杨佩文. 基于整合分析土壤微生物量碳、氮含量对有机肥施用的响应特征. 中国土壤与肥料, 2024(6): 89-101.
MO Y F, SHEN Y X, HE B, SHI Z F, TANG J C, YANG T Y, ZHAI H, HAN T H, CHEN Q B, YANG P W. The response characteristics of soil microbial biomass carbon and nitrogen contents to organic fertilizer by Meta-analysis. Soil and Fertilizer Sciences in China, 2024(6): 89-101. (in Chinese)
[36]
臧逸飞, 郝明德, 张丽琼, 张昊青. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5): 1445-1451.
ZANG Y F, HAO M D, ZHANG L Q, ZHANG H Q. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5): 1445-1451. (in Chinese)
[37]
田小明, 李俊华, 王成, 褚贵新, 危常州, 郑倩, 邓世伟. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响. 土壤, 2014, 46(3): 481-488.
TIAN X M, LI J H, WANG C, CHU G X, WEI C Z, ZHENG Q, DENG S W. Effects of continuous application of bio-organic fertilizer for three years on soil nutrients, microbial biomass and enzyme activity. Soils, 2014, 46(3): 481-488. (in Chinese)
[38]
乔洁, 任秀艳. 草炭对设施土壤有机碳、氮及土壤微生物生物量的影响. 西南农业学报, 2012, 25(5): 1777-1780.
QIAO J, REN X Y. Effects of peat on organic carbon, total nitrogen and soil microbial biomass in greenhouse soil. Southwest China Journal of Agricultural Sciences, 2012, 25(5): 1777-1780. (in Chinese)
[39]
王翠萍. 不同土壤微生物量碳与有机碳矿化的关系研究. 广东农业科学, 2013, 40(11): 52-54.
WANG C P. The relationship of soil organic carbon and mineralization to themicrobial biomass content (MBC) under the conditions of different utilization types with soil. Guangdong Agricultural Sciences, 2013, 40(11): 52-54. (in Chinese)
[40]
SMITH H J, FOSTER R A, MCKNIGHT D M, LISLE J T, LITTMANN S, KUYPERS M M M, FOREMAN C M. Microbial formation of labile organic carbon in Antarctic glacial environments. Nature Geoscience, 2017, 10(5): 356-359.

doi: 10.1038/ngeo2925
[41]
曹亚静, 赵美丞, 郑春燕, 朱峰. 根际微生物介导的植物响应干旱胁迫机制研究进展. 中国生态农业学报(中英文), 2023, 31(8): 1330-1342.
CAO Y J, ZHAO M C, ZHENG C Y, ZHU F. Rhizosphere microorganisms-mediated plant responses to drought stress. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1330-1342. (in Chinese)
[42]
ZHANG S H, CAO Z P, HU C J. Effect of added straw carbon on soil microbe and protozoa abundance. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1283-1288.

doi: 10.3724/SP.J.1011.2011.01283
[43]
XIE Z H, YU Z H, LI Y S, WANG G H, LIU X B, TANG C X, LIAN T X, ADAMS J, LIU J J, LIU J D, HERBERT S J, JIN J. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. NPJ Biofilms and Microbiomes, 2022, 8: 14.

doi: 10.1038/s41522-022-00277-0 pmid: 35365687
[44]
张蕤, 王欢欢, 赵园园, 程玉渊, 吴疆, 史宏志. 不同碳源有机物料对植烟土壤碳氮及细菌群落的影响. 河南农业科学, 2022, 51(3): 84-94.
ZHANG R, WANG H H, ZHAO Y Y, CHENG Y Y, WU J, SHI H Z. Effects of organic materials with different carbon sources on soil carbon and nitrogen and bacterial communities in tobacco-planting soil. Journal of Henan Agricultural Sciences, 2022, 51(3): 84-94. (in Chinese)
[45]
黄颖博, 罗凡, 龚雪蛟, 王迎春, 李兰英, 刘东娜, 尧渝. 有机肥对土壤微生物群落特征影响的研究进展. 中国农学通报, 2023, 39(3): 88-96.

doi: 10.11924/j.issn.1000-6850.casb2022-0167
HUANG Y B, LUO F, GONG X J, WANG Y C, LI L Y, LIU D N, YAO Y. Effects of organic fertilizers on soil microbial community characteristics: Research progress. Chinese Agricultural Science Bulletin, 2023, 39(3): 88-96. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0167
[46]
胡诚, 曹志平, 罗艳蕊, 马永良. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响. 中国生态农业学报, 2007, 15(3): 48-51.
HU C, CAO Z P, LUO Y R, MA Y L. Effect of long-term application of microorganismic compost or vermicompost on soil fertility and microbial biomass carbon. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese)
[47]
WEI L, GE T D, ZHU Z K, LUO Y, YANG Y H, XIAO M L, YAN Z F, LI Y H, WU J S, KUZYAKOV Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398: 115121.

doi: 10.1016/j.geoderma.2021.115121
[48]
王威雁, 沈鹏飞, 张侯平, 莫非, 温晓霞, 廖允成. 长期保护性耕作下土壤团聚体全氮与氮功能微生物关系研究. 土壤学报, 2024, 61(6): 1653-1667.
WANG W Y, SHEN P F, ZHANG H P, MO F, WEN X X, LIAO Y C. Study on the relationship between total nitrogen and nitrogen functional microorganisms in soil aggregates under long-term conservation tillage. Acta Pedologica Sinica, 2024, 61(6): 1653-1667. (in Chinese)
[49]
胡可, 李华兴, 卢维盛, 刘远金, 王利宾. 生物有机肥对土壤微生物活性的影响. 中国生态农业学报, 2010, 18(2): 303-306.
HU K, LI H X, LU W S, LIU Y J, WANG L B. Effect of microbial organic fertilizer application on soil microbial activity. Chinese Journal of Eco-Agriculture, 2010, 18(2): 303-306. (in Chinese)

doi: 10.3724/SP.J.1011.2010.00303
[50]
王淑平, 周广胜, 孙长占, 姜亦梅, 姜岩, 刘孝义. 土壤微生物量氮的动态及其生物有效性研究. 植物营养与肥料学报, 2003, 9(1): 87-90.
WANG S P, ZHOU G S, SUN C Z, JIANG Y M, JIANG Y, LIU X Y. The dynamics of soil microbial biomass nitrogen and its biological availability. Plant Nutrition and Fertilizing Science, 2003, 9(1): 87-90. (in Chinese)
[51]
沈心涛, 涂保华, 刘朝阳, 赵远, 丁骥贤, 梁玉婷. 酸性逆境土壤中根际微生物调控植物根系构型的作用机制. 环境科学, 2025, 46(1): 570-578.
SHEN X T, TU B H, LIU C Y, ZHAO Y, DING J X, LIANG Y T. Mechanisms of rhizosphere microorganisms in regulating plant root system architecture in acidic soils. Environmental Science, 2025, 46(1): 570-578. (in Chinese)

doi: 10.1021/es204049x
[52]
YANG Y, LIANG C, WANG Y Q, CHENG H, AN S S, CHANG S X. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration. Soil Biology and Biochemistry, 2020, 149: 107928.

doi: 10.1016/j.soilbio.2020.107928
[53]
DUAN Y L, ZHANG J B, PETROPOULOS E, ZHAO J H, JIA R L, WU F S, CHEN Y, WANG L L, WANG X Y, LI Y L, LI Y Q. Soil acidification destabilizes terrestrial ecosystems via decoupling soil microbiome. Global Change Biology, 2025, 31(4): e70174.

doi: 10.1111/gcb.v31.4
[54]
PHILIPPOT L, CHENU C, KAPPLER A, RILLIG M C, FIERER N. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, 22(4): 226-239.

doi: 10.1038/s41579-023-00980-5 pmid: 37863969
[1] GUO HuiTing, SUN YanWen, NIU YiHeng, LI YaPeng, LI JianHua, XU MingGang. Fertilization Significantly Changed Soil Bacterial Diversity and Dominant Microbial Community in Croplands of Northern China—Meta Analysis [J]. Scientia Agricultura Sinica, 2026, 59(1): 114-128.
[2] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[3] WU WenQi, JIAO Yang, XI JiaZhen, WANG XuFeng, GUO BoSen, SHEN YuFang. Effects of Different Organic Materials Combined with Chemical Fertilizer on Soil Fertility and Maize Grain Yield [J]. Scientia Agricultura Sinica, 2025, 58(23): 4966-4978.
[4] HAN ZheQun, SU Ying, GAO QiQi, LIU MeiYing, JIA AngYuan, ZHANG HaiRui, NAN ShanShan, XU QinZheng, WANG Qiang, WANG LiJun, WU XuePing. Intelligent Drip Irrigation Water-Fertilizer Coupling Regime Realizes Synergistic Improvement of Soil Water Conservation, Salt Control and Sunflower Yield and Quality [J]. Scientia Agricultura Sinica, 2025, 58(20): 4158-4177.
[5] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[6] LI ShuaiBing, LI ChenXin, REN Li, YU XiaoNa, GENG SaiNan, SHENG Kai, ZHANG YinJie, WANG YiLun. Effects of Soybean Planting on Phosphorus Absorption of Wheat and Phosphorus Transformation in Soil [J]. Scientia Agricultura Sinica, 2025, 58(19): 3932-3945.
[7] CHEN HuiXian, HE Wen, RUAN LiXia, HUANG XiaoJuan, LAN Xiu, CAI ZhaoQin, LI HengRui, HUANG ZhenLing, WEI WanLing, LIANG ZhenHua, LI TianYuan, CAO Sheng, LI XiDi, WEI JunCan. Effects of Intercropping Soybean on Cassava Growth and Soil Characteristics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2176-2189.
[8] JIA BingLi, LI YanXing, YANG WenJie, YU Jie, YUAN AiJing, LI NingNa, QIU WeiHong, WANG ZhaoHui. Effects of Phosphorus Fertilization on the Yield and Phosphorus Absorption and Utilization of Dryland Winter Wheat Under Different Precipitation Year Types [J]. Scientia Agricultura Sinica, 2024, 57(16): 3192-3206.
[9] JI JianHua, LÜ ZhenZhen, LIU ShuZhen, HOU HongQian, LIU YiRen, LIU XiuMei, LI XuHua, LAN XianJin. Long-Term Application of Chemical Fertilizers Induces Soil Acidification and Soil Exchangeable Base Cation Loss on Paddy in Southern China [J]. Scientia Agricultura Sinica, 2024, 57(13): 2599-2611.
[10] LI Rong, YAN HuiFang, ZHANG Long, MIAO FangFang, MIAN YouMing, HOU XianQing. Effects of Different Tillage Practices on Soil Physical Properties and Crop Yield in the Region of Southern Ningxia [J]. Scientia Agricultura Sinica, 2023, 56(18): 3543-3555.
[11] XU JuZhen, ZHANG MengLu, HE WenQing, SUI Peng, CHEN YuanQuan, CUI JiXiao. Yield-Increasing Effects Under Plastic Film Mulching of Potato in China Based on Meta-Analysis [J]. Scientia Agricultura Sinica, 2023, 56(15): 2895-2906.
[12] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
[13] LIAO Ping, MENG Yi, WENG WenAn, HUANG Shan, ZENG YongJun, ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] MENG Yi,WENG WenAn,CHEN Le,HU Qun,XING ZhiPeng,WEI HaiYan,GAO Hui,HUANG Shan,LIAO Ping,ZHANG HongCheng. Effects of Water-Saving Irrigation on Grain Yield and Quality: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(11): 2121-2134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!