Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2176-2189.doi: 10.3864/j.issn.0578-1752.2025.11.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Intercropping Soybean on Cassava Growth and Soil Characteristics

CHEN HuiXian1(), HE Wen1, RUAN LiXia1(), HUANG XiaoJuan1, LAN Xiu1, CAI ZhaoQin1, LI HengRui1, HUANG ZhenLing1, WEI WanLing1, LIANG ZhenHua1, LI TianYuan1, CAO Sheng2(), LI XiDi3, WEI JunCan3   

  1. 1 Guangxi South Subtropical Agricultural Sciences Research Institute/Longzhou Tropical Crop Science Observation Comprehensive Experimental Station of the Ministry of Agriculture and Rural Affairs, Longzhou 532415, Guangxi
    2 Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
    3 Pingguo City Sitang Town Rural Construction Comprehensive Service Center, Pingguo 531409, Guangxi
  • Received:2024-08-21 Accepted:2024-12-10 Online:2025-06-01 Published:2025-06-09
  • Contact: RUAN LiXia, CAO Sheng

Abstract:

【Objective】 This study aimed to explore the impacts of cassava/soybean intercropping patterns on the growth of cassava and its continuous cropping soil, to analyze the potential of cassava/soybean intercropping patterns to alleviate the obstacles of cassava continuous cropping, so as to provide theoretical references for alleviating the obstacles of cassava continuous cropping. 【Method】 On the continuous cropping soil of cassava, the differences in physical and chemical properties of rhizosphere soil, microbial species diversity, community structure between cassava monoculture and cassava/soybean intercropping patterns were compared, and the impacts of cassava/soybean intercropping patterns on the continuous cropping soil of cassava were explored; the differences in plant height, stem thickness, yield, and photosynthetic characteristics between the two planting patterns were compared too, and the correlation between soil physical and chemical properties, microbial species diversity, community structure, and plant height, stem thickness, yield, and photosynthetic characteristics of cassava were analyzed to clarify the impact and mechanism of cassava/soybean intercropping patterns on the growth of cassava. 【Result】 (1) In a 3-year trial, compared with the continuous monoculture of cassava, soil pH, porosity, organic matter content, alkali-hydrolyzable nitrogen content, bacterial number, fungal number, plant height, yield, photosynthetic rate, and transpiration rate under the cassava/soybean intercropping pattern increased year by year, while soil bulk density decreased year by year, and the differences in these indicators reached significant levels in the second or third year of the trial. (2) Cassava/soybean intercropping had little effect on the species diversity of bacteria and fungi in the continuous cropping soil of cassava, but had a significant impact on the composition and relative abundance of dominant bacterial communities in the continuous cropping soil of cassava, among which the impact on the abundance of the beneficial fungus Trichoderma was the most significant. (3) Soil pH showed a significantly positively correlated with the transpiration rate of cassava leaves; Soil organic matter content showed a significantly positively correlated with plant height, photosynthetic rate and transpiration rate of cassava leaves; Soil porosity and alkali-hydrolyzable nitrogen content both showed a significantly positively correlated with the photosynthetic rate and transpiration rate of cassava leaves; The relative abundance of Trichoderma showed a significantly positively correlated with the stem diameter, plant height, yield, photosynthetic rate and transpiration rate of cassava leaves. 【Conclusion】 The cassava/soybean intercropping pattern could improve the pH, porosity, organic matter content, and alkali-hydrolyzable nitrogen content of the continuous cropping soil of cassava, regulate the soil microbial community structure, recruit a large number of potential beneficial fungi Trichoderma, and alleviate the adverse factors, such as soil acidification, hardening, and nutrient decline in the continuous cropping soil of cassava, thereby promoting the growth of cassava and having a relieving effect on the obstacles of cassava continuous cropping.

Key words: cassava/soybean intercropping, cassava growth, continuous cropping soil, soil physical and chemical properties, microorganisms

Table 1

Plant height, stem diameter and yield of cassava under two cropping patterns"

试验阶段
Trial period
种植模式
Cropping pattern
株高
Plant height (m)
茎粗
Stem diameter (cm)
产量
Yield (kg/plant)
2021
(试验第1年 First year of trial)
木薯连作第5年
The fifth year of continuous cropping cassava
1.52±0.09a 25.11±1.36a 1.37±0.16a
木薯大豆间作第1年
First year of cassava/soybean intercropping
1.51±0.13a 24.48±2.98a 1.28±0.07a
2022
(试验第2年 Second
year of trial)
木薯连作第6年
The sixth year of continuous cropping cassava
1.70±0.13a 32.29±1.86a 1.40±0.15a
木薯大豆间作第2年
The second year of cassava/soybean intercropping
1.90±0.22a 37.36±1.64a 2.18±0.16a
2023
(试验第3年 Third
year of trial)
木薯连作第7年
The seventh year of continuous cropping cassava
1.46±0.17b 33.25±2.02b 1.47±0.32b
木薯大豆间作第3年
The third year of cassava/soybean intercropping
1.94±0.14a 42.43±2.45a 3.45±0.48a

Table 2

Photosynthetic characteristics of cassava under two planting patterns"

试验阶段
Trial period
种植模式
Cropping pattern
CO2浓度
Ci
(µmol·mol-1)
气孔导度
Gs
(mmol·m-2·s-1)
净光合速率
Pn
(µmol·m-2·s-1)
蒸腾速率
Tr
(mmol·m-2·s-1)
水分利用率
WUE
(µmol·mmol-1)
2021
(试验第1年
First year of trial)
木薯连作第5年
The fifth year of continuous cropping cassava
299.21±11.83a 866.74±258.35a 23.18±0.81a 9.26±1.76a 2.52±0.14a
木薯大豆间作第1年
First year of cassava/soybean intercropping
306.35±7.81a 1018.10±215.76a 25.64±0.96a 9.75±1.57a 2.44±0.17a
2022
(试验第2年
Second year of trial)
木薯连作第6年
The sixth year of continuous cropping cassava
312.12±2.35a 1224.51±310.38a 25.49±2.13b 8.64±3.27b 2.97±0.21a
木薯大豆间作第2年
The second year of cassava/soybean intercropping
388.37±3.12a 1601.42±172.21a 39.53±3.25a 14.75±3.20a 2.64±0.25a
2023
(试验第3年
Third year of trial)
木薯连作第7年
The seventh year of continuous cropping cassava
304.45±7.14a 1273.23±143.39a 23.81±2.53b 8.32±3.16b 3.28±0.83a
木薯大豆间作第3年
The third year of cassava/soybean intercropping
397.13±9.18a 1623.34±240.31a 40.74±2.85a 15.39±2.78a 2.43±0.54a

Table 3

Soil pH, water content, porosity and bulk density under two planting patterns"

试验阶段
Trial period
种植模式
Cropping pattern
pH 孔隙度
Porosity
(%)
容重
Bulk density
(g·cm-³)
土壤含水量
Soil water content
(%)
2021
(试验第1年 First year of trial)
木薯连作第5年
The fifth year of continuous cropping cassava
4.74±0.04a 34.27±1.35a 1.55±0.03a 18.42±1.08a
木薯大豆间作第1年
First year of cassava/soybean intercropping
4.81±0.12a 35.31±1.79a 1.52±0.02a 19.19±1.29a
2022
(试验第2年Second
year of trial)
木薯连作第6年
The sixth year of continuous cropping cassava
4.71±0.28a 33.28±2.19a 1.59±0.04a 19.17±1.03a
木薯大豆间作第2年
The second year of cassava/soybean intercropping
4.93±0.75a 36.12±1.04a 1.47±0.03b 20.69±1.52a
2023
(试验第3年Third
year of trial)
木薯连作第7年
The seventh year of continuous cropping cassava
4.39±0.28b 34.79±1.09b 1.75±0.08a 19.05±1.93a
木薯大豆间作第3年
The third year of cassava/soybean intercropping
5.07±0.75a 39.72±1.04a 1.26±0.05b 21.19±1.52a

Table 4

Soil nutrient content under two planting patterns"

试验阶段
Trial period
种植模式
Cropping pattern
有机质
Organic matter
(g·kg-1)
速效钾
Available potassium
(mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
碱解氮
Alkali-hydrolyzable nitrogen
(mg·kg-1)
2021
(试验第1年First year of trial)
木薯连作第5年
The fifth year of continuous cropping cassava
20.57±1.07a 156.54±5.83a 46.28±1.55a 92.28±2.40a
木薯大豆间作第1年
First year of cassava/soybean intercropping
21.58±0.46a 156.46±4.00a 51.28±1.00a 109.28±4.01a
2022
(试验第2年Second
year of trial)
木薯连作第6年
The sixth year of continuous cropping cassava
19.88±0.33b 145.28±2.51a 45.72±1.84a 94.18±1.96b
木薯大豆间作第2年
The second year of cassava/soybean intercropping
23.98±2.06a 157.48±6.52a 53.83±2.61a 116.60±1.01a
2023
(试验第3年Third
year of trial)
木薯连作第7年
The seventh year of continuous cropping cassava
18.18±0.85b 167.23±5.07a 55.16±1.85a 100.25±9.26b
木薯大豆间作第3年
The third year of cassava/soybean intercropping
25.18±1.16a 175.09±3.19a 50.13±1.97a 127.60±4.34a

Table 5

The microbial quantity of cassava rhizosphere soil under two planting patterns"

试验阶段
Trial period
种植模式
Cropping pattern
细菌
Bacteria
(×105 cfu·g-1)
真菌
Fungi
(×103 cfu·g-1)
放线菌
Actinomycete
(×105 cfu·g-1)
微生物总数
Total number
(×105 cfu·g-1)
2021
(试验第1年First year of trial)
木薯连作第5年
The fifth year of continuous cropping cassava
15.29±1.09a 27.34±2.13a 2.38±0.36a 17.70±2.05a
木薯大豆间作第1年
First year of cassava/soybean intercropping
20.46±2.16a 30.28±1.06a 2.45±0.72a 22.94±2.62a
2022
(试验第2年Second
year of trial)
木薯连作第6年
The sixth year of continuous cropping cassava
18.75±2.74b 23.05±2.43b 3.92±0.66a 22.69±2.08b
木薯大豆间作第2年
The second year of cassava/soybean intercropping
30.73±2.98a 34.37±1.36a 4.17±0.54a 34.93±3.74a
2023
(试验第3年Third
year of trial)
木薯连作第7年
The seventh year of continuous cropping cassava
20.53±1.79b 28.06±1.49b 2.83±0.34a 22.59±2.18b
木薯大豆间作第3年
The third year of cassava/soybean intercropping
37.14±2.27a 47.02±1.67a 3.89±0.31a 39.08±1.38a

Fig. 1

Chao1 and ACE index of bacteria under two planting patterns M indicates the cassava mono-cropping pattern, MD indicates the cassava/soybean intercropping pattern. The different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Shannon and Simpson index of bacteria under two planting patterns"

Fig. 3

Chao1 and ACE index of fungus under two planting patterns"

Fig. 4

Shannon and Simpson index of fungus under two planting pattens"

Fig. 5

Relative abundances of the top 15 most abundant bacterial communities under two planting patterns"

Fig. 6

Relative abundance of dominant bacterial genera under the two planting patterns"

Fig. 7

Relative abundances of the top 15 most abundant fungus communities under two planting patterns"

Fig. 8

Relative abundance of dominant fungus genera under the two planting patterns"

Fig. 9

LEfSe analysis results of bacterial communities under two planting patterns"

Fig. 10

LEfSe analysis results of fungus communities under two planting patterns"

Fig. 11

Correlation between cassava agronomic traits, yield and photosynthetic characteristics and soil factors * Indicates a significant level of correlation (P<0.05), ** Indicates a very significant level of correlation (P<0.01). Blue represents a negative correlation, red represents a positive correlation, and the darker the color, the greater the correlation"

[38]
AMELOOT N, DE NEVE S, JEGAJEEVAGAN K, YILDIZ G, BUCHAN D, FUNKUIN Y N, PRINS W, BOUCKAERT L, SLEUTEL S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 2013, 57: 401-410.
[39]
QIN L, GAO Y P, WANG L L, RAN J Y, OU X H, WANG Y H, JIANG W K, ZHOU T, YUAN Q S. Trichoderma consortium compost corncob promotes the growth of Pseudostellaria heterophylla and alleviates its diseases incidence via reshaping the soil microbiome and improving the soil nutrients under continuous monocropping conditions. Industrial Crops & Products, 2024, 216: 118800.
[40]
宋泽海, 田沛. 土壤微生物在土壤改良与修复中的作用概述. 草业科学, 2024, 41(11): 2622-2636.
SONG Z H, TIAN P. A review of soil microorganism functions in soil improvement and remediation. Pratacultural Science, 2024, 41(11): 2622-2636. (in Chinese)
[41]
闫庆祥, 魏云霞, 黄洁, 李天, 徐海强. 木薯/大豆不同间作模式对木薯光合生理特性、产量的影响研究. 热带农业科学, 2017, 37(12): 10-15.
YAN Q X, WEI Y X, HUANG J, LI T, XU H Q. Effect of different intercropping patterns of cassava/soybean on photosynthesis, physiology and yield of cassava. Chinese Journal of Tropical Agriculture, 2017, 37(12): 10-15. (in Chinese)
[42]
李庆凯. 玉米//花生缓解花生连作障碍机理研究[D]. 长沙: 湖南农业大学, 2020.
LI Q K. Study on the mechanism of maize-peanut intercropping to alleviate the obstacle of peanut continuous cropping[D]. Changsha: Hunan Agricultural University, 2020. (in Chinese)
[43]
孙新展. 不同种植模式对缓解棉花连作障碍的化感作用机制[D]. 石河子: 石河子大学, 2018.
SUN X Z. Allelopathy mechanism of different cropping patterns on alleviating continuous cropping obstacle of cotton[D]. Shihezi: Shihezi University, 2018. (in Chinese)
[44]
宋尚成, 李敏, 刘润进. 种植模式与土壤管理制度对作物连作障碍的影响. 中国农学通报, 2009, 25(21): 231-235.
SONG S C, LI M, LIU R J. Effects of plant patterns and soil managements on crop replant diseases. Chinese Agricultural Science Bulletin, 2009, 25(21): 231-235. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2009-1216
[45]
GAO H, LI S, WU F Z. Impact of intercropping on the diazotrophic community in the soils of continuous cucumber cropping systems. Frontiers in Microbiology, 2021, 12: 630302.
[46]
ZENG J R, LIU J Z, LU C H, OU X H, LUO K K, LI C M, HE M L, ZHANG H Y, YAN H J. Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (patchouli). Frontiers in Microbiology, 2020, 11: 579719.
[47]
WANG M Y, WU C N, CHENG Z H, MENG H W, ZHANG M R, ZHANG H J. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping. PLoS ONE, 2014, 9(10): e111040.
[37]
LI Y, CAO J, WANG C M, MA L, MA K. Effects of potato/faba bean intercropping on the potato rhizosphere soil microbial community. Journal of Agricultural Sciences, 2017, 38(2): 8-13. (in Chinese)
李越, 曹瑾, 汪春明, 马玲, 马琨. 蚕豆间作栽培对连作马铃薯根际土壤微生物的影响. 农业科学研究, 2017, 38(2): 8-13.
[36]
GUO L. Effects of industrial hemp cultivation on soil microbial community structure and diversity in black soil region of northeast China[D]. Haerbin: Northeast Forestry University, 2022. (in Chinese)
郭丽. 东北黑土区工业大麻种植对土壤微生物群落结构及多样性的影响[D]. 哈尔滨: 东北林业大学, 2022.
[35]
CHANG X L, WEI D Q, ZENG Y H, ZHAO X Y, HU Y, WU X L, SONG C, GONG G S, CHEN H B, YANG C P, ZHANG M, LIU T G, CHEN W Q, YANG W Y. Maize-soybean relay strip intercropping reshapes the rhizosphere bacterial community and recruits beneficial bacteria to suppress Fusarium root rot of soybean. Frontiers in Microbiology, 2022, 13: 1009689.
[34]
LIAN T X, MU Y H, MA Q B, CHENG Y B, GAO R, CAI Z D, JIANG B, NIAN H. Use of sugarcane-soybean intercropping in acid soil impacts the structure of the soil fungal community. Scientific Reports, 2018, 8: 14488.

doi: 10.1038/s41598-018-32920-2 pmid: 30262899
[33]
MALVIYA M K, SOLANKI M K, LI C N, WANG Z, ZENG Y, VERMA K K, SINGH R K, SINGH P, HUANG H R, YANG L T, SONG X P, LI Y R. Sugarcane-legume intercropping can enrich the soil microbiome and plant growth. Frontiers in Sustainable Food Systems, 2021, 5: 606595.
[32]
SEGURA J H, NILSSON M B, SPARRMAN T, SERK H, SCHLEUCHER J, TOLU J, ÖQUIST M G. Boreal tree species affect soil organic matter composition and saprotrophic mineralization rates. Plant and Soil, 2019, 441(1): 173-190.
[31]
LIU M Y, LIU M M, LI P, YANG J H, WANG J, CHANG Q R. Variations in soil organic carbon decompositions of different land use patterns on the tableland of Loess Plateau. Environmental Science and Pollution Research, 2020, 27(4): 4337-4352.
[30]
HUA C P, WANG Y J, XIE Z K, GUO Z H, ZHANG Y B, QIU Y, WANG L. Effects of intercropping on rhizosphere soil microorganisms and root exudates of Lanzhou lily (Lilium davidii var. Unicolor). Sciences in Cold and Arid Regions, 2018, 10(2): 159-168.
[29]
BAI W L, ZHENG Y, XIAO J X. Below-ground biotic mechanisms of phosphorus uptake and utilization improved by cereal and legume intercropping-A review. Crops, 2018(4): 20-27. (in Chinese)
柏文恋, 郑毅, 肖靖秀. 豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展. 作物杂志, 2018(4): 20-27.
[28]
DUAN Y, SHEN J Z, ZHANG X L, WEN B, MA Y C, WANG Y H, FANG W P, ZHU X J. Effects of soybean-tea intercropping on soil-available nutrients and tea quality. Acta Physiologiae Plantarum, 2019, 41(8): 140.
[27]
LI Y, HUANG Y F, YE X P, LIANG W M. Effects of intercropping soybean on nutrient contents in soil at Camellia oleifera young forest. Non-Wood Forest Research, 2013, 31(2): 54-59. (in Chinese)
李云, 黄永芳, 叶小萍, 梁伟明. 油茶幼林间种大豆对土壤养分含量的影响. 经济林研究, 2013, 31(2): 54-59.
[26]
XUE N W, LIU J X, GAO J B, YANG Z P. Effects of intercropping quinoa and legumes on crop yield and soil physicochemical properties. Journal of Shanxi Agricultural University (Natural Science Edition), 2023, 43(2): 38-47. (in Chinese)
薛乃雯, 刘建霞, 高晶波, 杨珍平. 藜麦豆科间作对作物产量及土壤理化性质的影响. 山西农业大学学报(自然科学版), 2023, 43(2): 38-47.
[25]
PENG X Y, REN J B, CHEN P, YANG L D, LUO K, YUAN X T, LIN P, FU Z D, LI Y L, LI Y Z, YANG W Y, YONG T W. Effects of soil physicochemical environment on the plasticity of root growth and land productivity in maize soybean relay strip intercropping system. Journal of the Science of Food and Agriculture, 2024, 104(7): 3865-3882.
[24]
TE X, HASSAN M J, CUI K S, XIAO J H, ASLAM M N, SAEED A, YANG W Y, ALI S. Effect of different planting pattern arrangements on soil organic matter and soil nitrogen content under a maize/soybean strip relay intercropping system. Frontiers in Plant Science, 2022, 13: 995750.
[23]
SOLANKI M K, WANG F Y, WANG Z, LI C N, LAN T J, SINGH R K, SINGH P, YANG L T, LI Y R. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. Journal of Soils and Sediments, 2019, 19(4): 1911-1927.
[22]
WANG Z G, JIN X, BAO X G, LI X F, ZHAO J H, SUN J H, CHRISTIE P, LI L. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS ONE, 2014, 9(12): e113984.
[21]
YUE Q, JI Z Q, SHENG J, XU N X, ZHU P P, WANG X, ZONG J, GUO Z, LI Q K, ZHU X. Effects of rapeseed intercropped with chickpea and lupin on P, Fe, Zn absorption and utilization. Journal of Agro-Environment Science, 2023, 42(9): 1928-1935. (in Chinese)
岳骞, 纪正青, 盛婧, 许乃霞, 朱普平, 王鑫, 宗焦, 郭智, 李庆魁, 朱曦. 油菜与鹰嘴豆、羽扇豆间作对P、Fe、Zn养分吸收利用特征的影响. 农业环境科学学报, 2023, 42(9): 1928-1935.
[20]
LIN X G. Principles and Methods of Soil Microbiology Research. Beijing: Higher Education Press, 2010. (in Chinese)
林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010.
[19]
CHENG Z Y, SHI J C, HE Y, CHEN Y X, WANG Y J, YANG X L, WANG T Y, WU L S, XU J M. Enhanced soil function and health by soybean root microbial communities during in situ remediation of Cd-contaminated soil with the application of soil amendments. Systems, 2023, 8(3): e0104922.
[18]
CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth’s nitrogen cycle. Science, 2010, 330(6001): 192-196.
[17]
MARTIN F M, UROZ S, BARKER D G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356(6340): eaad4501.
[16]
MENDES L W, KURAMAE E E, NAVARRETE A A, VAN VEEN J A, TSAI S M. Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 2014, 8(8): 1577-1587.
[15]
WEI M Z, XIONG J, TANG X H, YAN H F, LI W L, QIN W Z, XU J, ZHENG X. Study on models of cassava intercropped soybean and its economic benefits analysis. Guangdong Agricultural Sciences, 2015, 42(3): 11-14. (in Chinese)
韦民政, 熊军, 唐秀桦, 闫海锋, 李韦柳, 覃维治, 许娟, 郑虚. 木薯与大豆间套种模式研究与效益分析. 广东农业科学, 2015, 42(3): 11-14.
[14]
NING D J, GUO X H, TANG F Y, CHEN W J, LIANG J, XIE L P, CHEN Y, WEI Q Y. Effect of different wide-narrow rows of cassava-soybean intercropping system on yield and quality. Soybean Science, 2023, 42(4): 424-431. (in Chinese)
宁德娇, 郭小红, 汤复跃, 陈文杰, 梁江, 谢丽萍, 陈渊, 韦清源. 不同宽窄行木薯‖大豆对间作体系产量和品质的影响. 大豆科学, 2023, 42(4): 424-431.
[13]
YUSUF I A, AIYELARI E A, ENIOLA H T, OYEKANMI E O. Evaluation of the planting schedule of soyabean/cassava intercrop systems for optimum yields in the Guinea savanna of Nigeria. Nigeria Agricultural Journal, 2010, 40(1): 145-149.
[12]
SUNDARI T, MUTMAIDAH S. Identification of soybeans genotypes suitable for intercropping with cassava. Journal Ilmu Pertanian Indonesia, 2018, 23(1): 29-37.
[11]
SUNDARI T, PURWANTORO P, ARTARI R, BALIADI Y. Response of soybean genotypes in intercropping with cassava. Journal Ilmu Pertanian Indonesia, 2020, 25(1): 129-137.
[10]
DETTWEILER M, WILSON C, MALTAIS-LANDRY G, MACDONALD G. Cassava-legume intercropping is more beneficial in low-input systems: A meta-analysis. Field Crops Research, 2023, 300: 109005.
[9]
LAO C Y, HUANG Y L, LI Y Y, ZHOU J, ZHOU L Z, WEI B H, LI S P, SHEN Z Y. Effects of intercropping row spaces between cassava and soybean on crop yields and economic profit. Journal of Southern Agriculture, 2023, 54(7): 2005-2014. (in Chinese)
劳承英, 黄渝岚, 李艳英, 周佳, 周灵芝, 韦本辉, 李素平, 申章佑. 木薯/大豆间作行距对作物产量和效益的影响. 南方农业学报, 2023, 54(7): 2005-2014.
[8]
WEI W L, LUO X L, LI L, ZHU Y M, FAN W J. Cassava yield and soil physical and chemical properties under different application rates of soil conditioners. Journal of Southern Agriculture, 2017, 48(4): 623-627. (in Chinese)
韦婉羚, 罗兴录, 李亮, 朱艳梅, 樊吴静. 土壤调理剂不同用量对木薯产量和土壤理化性状的影响. 南方农业学报, 2017, 48(4): 623-627.
[7]
LUO X L. Study on mechanism of continuous cropping of cassava. Collection of Abstracts of Papers of the 2018 Annual Meeting of the Agricultural System Branch of the Chinese Society of Agriculture, 2018. (in Chinese)
罗兴录. 木薯连作障碍机理研究. 中国农学会耕作制度分会2018年度学术年会论文摘要集, 2018.
[6]
WANG Z. Study on the relationship between phosphorus nutrition of cassava and continuous cropping obstacles[D]. Nanning: Guangxi University, 2016. (in Chinese)
王战. 木薯磷营养与连作障碍的关系研究[D]. 南宁: 广西大学, 2016.
[5]
LUO X L. Study on the relationship between the obstacle of cassava continuous cropping and the content of nitrogen, phosphorus and potassium in soil. Collection of Abstracts of Papers of the 2016 Annual Meeting of the Agricultural System Branch of the Chinese Society of Agriculture, 2016. (in Chinese)
罗兴录. 木薯连作障碍与土壤速效氮磷钾含量关系研究. 中国农学会耕作制度学术分会2016年会论文摘要集, 2016.
[4]
ZHOU G J. Study on the relationship between physicochemical properties of cassava rhizosphere soil and continuous cropping obstacles[D]. Nanning: Guangxi University, 2017. (in Chinese)
周贵靖. 木薯根际土壤理化性状与连作障碍关系研究[D]. 南宁: 广西大学, 2017.
[3]
LIANG H B, HUANG J, WEI Y X, LU K D, LIU C J. Analysis of yield gap and limiting factors for cassava on the farmland. Journal of Yunnan Agricultural University (Natural Science), 2017, 32(6): 975-984. (in Chinese)
梁海波, 黄洁, 魏云霞, 陆昆典, 刘翠娟. 基于农户尺度的木薯产量差及生产限制因素分析. 云南农业大学学报(自然科学), 2017, 32(6): 975-984.
[2]
SHI T, LI C P, CAI J M, WANG G F, LU C M, HAN Q H, HUANG G X. Occurrence pattern investigation and fungicides control effect in field for cassava brown leaf spot disease in China. Chinese Journal of Tropical Crops, 2019, 40(11): 2178-2188. (in Chinese)

doi: 10.3969/j.issn.1000-2561.2019.11.012
时涛, 李超萍, 蔡吉苗, 王国芬, 陆翠梅, 韩全辉, 黄贵修. 中国木薯褐斑病发病规律调查及田间防治药效试验. 热带作物学报, 2019, 40(11): 2178-2188.

doi: 10.3969/j.issn.1000-2561.2019.11.012
[1]
LIU S T. Effects of cassava continuous cropping and rotation on soil physical and chemical properties, microbial community and yield[D]. Nanning: Guangxi University, 2020. (in Chinese)
刘珊廷. 木薯连作与轮作对土壤理化性状及微生物群落和产量的影响[D]. 南宁: 广西大学, 2020.
[1] DU JiaQi, ZHANG ZiWei, WANG RuoFei, LI Xing, GUO HongYan, YANG Shuo, FENG Cheng, HE TangQing, Giri Bhoopander, ZHANG XueLin. The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2025, 58(1): 101-116.
[2] ZHOU XinYan, CHEN SiYu, WEI YuFei, ZHU Yu, FENG JunQian, DING DianCao, LU GuiFeng, YANG ShangDong. Characteristics of Endophytic Microbial Community Structures in Stems Between Hylocereus undatus and H. polyrhizus [J]. Scientia Agricultura Sinica, 2024, 57(2): 416-428.
[3] CHEN YiYong, LI JianLong, ZHOU Bo, WU XiaoMin, CUI YingYing, FENG ShaoMao, HU HaiTao, TANG JinChi. Effects of Intercropping with Vulpia myuros in Tea Plantation on Soil and Tea Quality Components [J]. Scientia Agricultura Sinica, 2023, 56(24): 4916-4929.
[4] GUO HanYue, WANG DongSheng, RUAN Yang, QIAO YiZhu, ZHANG YunTao, LI Ling, HUANG QiWei, GUO ShiWei, LING Ning, SHEN QiRong. Characteristics and Succession of Rhizosphere Soil Microbial Communities in Continuous Cropping Watermelon [J]. Scientia Agricultura Sinica, 2023, 56(21): 4245-4258.
[5] SHEN KaiQin, LIU Qian, YANG GuoTao, CHEN Hong, LIANG Cheng, LAI Peng, LI Chong, WANG XueChun, HU YunGao. Effects of Phosphorus Reduction on Soil Phosphorus Pool Composition and Phosphorus Solubilizing Microorganisms [J]. Scientia Agricultura Sinica, 2023, 56(15): 2941-2953.
[6] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[7] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[8] HAN Zhe, XU Li-hong, LIU Cong, KONG Ling-kun, WU Feng-zhi, PAN Kai. Effect of Wheat Residues on Growth and Rhizosphere Microorganisms of Continuously Monocropped Watermelon [J]. Scientia Agricultura Sinica, 2016, 49(5): 952-960.
[9] WANG Bin, LI Yu-E, WAN Yun-Fan, QIN Xiao-Bo, GAO Qing-Zhu. Effect and Assessment of Controlled Release Fertilizer and Additive Treatments on Greenhouse Gases Emission from a Double Rice Field [J]. Scientia Agricultura Sinica, 2014, 47(2): 314-323.
[10] WANG Hu-hu,XU Xing-lian.

Detection of Pathogenic Microorganisms in Fresh Chicken Meat by Multiplex PCR

[J]. Scientia Agricultura Sinica, 2010, 43(17): 3608-3615 .
[11] YANG Jin-li,HOU Xian-zhi,GAO Ai-wu. Quantity of Microorganisms Associated with Solid and Liquid Phases of Rumen Contents Using RT- PCR
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2126-2132 .
[12] ,,,,. Changes of Biochemical Properties of Agricultural Waste Materials During Composting in High Temperature and Static State [J]. Scientia Agricultura Sinica, 2005, 38(08): 1699-1705 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!