Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 114-128.doi: 10.3864/j.issn.0578-1752.2026.01.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Fertilization Significantly Changed Soil Bacterial Diversity and Dominant Microbial Community in Croplands of Northern China—Meta Analysis

GUO HuiTing1,2,3(), SUN YanWen1,2,3, NIU YiHeng1,2,3, LI YaPeng1,2,3, LI JianHua1,2,3,*(), XU MingGang1,2,3,*()   

  1. 1 College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan 030031
    3 Soil Health Laboratory in Shanxi Province, Taiyuan 030031
  • Received:2025-02-20 Accepted:2025-07-03 Online:2026-01-01 Published:2026-01-07
  • Contact: LI JianHua, XU MingGang

Abstract:

【Objective】This study aimed to clarify the response and driving factors of soil bacterial diversity and dominant microbial community to fertilization measures in farmland ecosystems in northern China under different natural factors, soil properties and farmland management measures, so as to provide a scientific basis for revealing the regulatory mechanism of fertilizer application on the structure of soil microbial communities, enhancing soil biological fertility, and maintaining the stability of farmland ecosystems. 【Method】In this study, 50 papers published between 2014 and 2024 were synthesized, 207 groups of relatively independent data on bacterial diversity and dominant community were obtained, and the effects of fertilizer application on soil bacterial diversity and dominant microbial community in agricultural fields in northern China from fertilizer application measures, region, climate, soil pH level, soil SOC level, crop species, and nitrogen application were quantitatively analyzed by using the meta-analysis method and the randomized forest model.【Result】In general, fertilization significantly enhanced the number of soil bacterial OTUs (5.6%), Chao1 index (4.3%), and the relative abundance of Ascomycota (5.3%), and significantly decreased the relative abundance of Acidobacteriaceae (-5.6%) and Greenbenders (-10.4%) (P<0.05), but there was no significant effect on the bacterial Shannon's index. In those areas with mean annual temperature <10 ℃and annual rainfall >400 mm, fertilization significantly enhanced the number of soil bacterial OTUs, Chao1 index and Ascomycota, but significantly decreased the Acidobacteria phylum and Green Benders phylum (P<0.05). In alkaline soil and soil poor in starting organic carbon (SOC) (<12 g·kg-1), fertilization significantly increased the number of bacterial OTUs and Chao1 index; in neutral soil and different initial SOC, fertilization significantly increased the relative abundance of Aspergillus phylum, but decreased the relative abundance of Acidobacterium phylum and Greenscope phylum. Compared with wheat and other crops, fertilizer application increased the number of bacterial OTUs (9.4%), Chao1 index (6.4%), and relative abundance of Ascomycota (4.8%), and significantly decreased the relative abundance of Acidobacteria (7.4%) and Greencurvata (11.7%) in maize (P<0.05); fertilization significantly increased the number of bacterial OTUs and Chao1 index (6.4%), and relative abundance of Aspergillus species (4.8%) in Nitrogen application >200 kg·hm-2. Nitrogen application at >200 kg·hm-2 significantly increased the number of bacterial OTUs, Chao1 index and relative abundance of Ascomycetes, while significantly decreased the relative abundance of Acidobacteria and Green Benders. Soil organic carbon was the main controlling factor affecting the number of soil bacterial OTU and bacterial Shannon index, annual rainfall was the main controlling factor affecting bacterial Chao1 index, annual mean temperature was the main controlling factor affecting soil bacterial Aspergillus and Acidobacteria phylum, and pH was the main controlling factor affecting soil bacterial Green Benders phylum.【Conclusion】It was recommended that in different regions of northern China, different fertilization measures should be selected according to local conditions, taking into full consideration of local natural factors, soil properties and farmland management measures, so as to achieve the scientific fertilization to maintain soil bacterial diversity and promote soil health.

Key words: fertilization measures, soil bacteria, dominant microbial community, Meta-analysis, croplands of northern China

Fig. 1

Effects of fertilization on soil bacterial α diversity and dominant microbial community Dots represent percentage changes in soil bacterial diversity and dominant bacterial communities. Error bars denote 95% confidence intervals. If the 95% confidence interval does not include the horizontal coordinate zero point, it indicates a significant difference between the treatment and control (solid dots). Numbers beside dots indicate sample sizes. The same as below"

Fig. 2

Effects of fertilization on soil bacterial diversity and dominant microbial community under different natural factors"

Fig. 3

Effects of fertilization on soil bacterial diversity and dominant microbial community under different soil properties"

Fig. 4

Effects of fertilization on soil bacterial diversity and dominant microbial community under different management measures"

Fig. 5

The main factors affecting the variation of soil bacterial community characteristics by fertilization “**” indicates extremely significant, “*” indicates significant"

[1]
赵慧英, 王海燕. 土壤多功能性及其驱动因素研究进展. 应用与环境生物学报, 2024, 30(3): 615-622.
ZHAO H Y, WANG H Y. Soil multifunctionality and its driving factors: A review. Chinese Journal of Applied and Environmental Biology, 2024, 30(3): 615-622. (in Chinese)
[2]
胡志娥, 肖谋良, 丁济娜, 季剑虹, 陈剑平, 葛体达, 鲁顺保. 长期覆膜条件下农田土壤微生物群落的响应特征. 环境科学, 2022, 43(10): 4745-4754.
HU Z E, XIAO M L, DING J N, JI H, CHEN J P, GE T D, LU S B. Response characteristics of soil microbial community under long-term film mulching. Environmental Science, 2022, 43(10): 4745-4754. (in Chinese)
[3]
FIERER N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15(10): 579-590.

doi: 10.1038/nrmicro.2017.87 pmid: 28824177
[4]
刘东海, 乔艳, 李双来, 陈云峰, 张智, 李菲, 胡诚. 长期施肥对黄棕壤细菌多样性的影响. 植物营养与肥料学报, 2021, 27 (5): 760-767.
LIU D H, QIAO Y, LI S L, CHEN Y F, ZHANG Z, LI F, HU C. Effects of long-term fertilizer application on bacterial diversity in a yellow brown soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 760-767. (in Chinese)
[5]
MUÑOZ-ROJAS M, ERICKSON T E, DIXON K W, MERRITT D J. Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology, 2016, 24(S2): 43-52.
[6]
胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述. 生态环境学报, 2011, 20(S1): 1161-1167.
HU C J, LIU G H, WU Y Q. A review of soil microbial biomass and diversity measurements. Ecology and Environmental Sciences, 2011, 20(S1): 1161-1167. (in Chinese)
[7]
谢钧宇, 张慧芳, 罗云琪, 孟会生, 张杰, 洪坚平, 徐明岗. 连续7年施肥提升复垦土壤肥力提高玉米产量的驱动因子. 农业工程学报, 2024, 40(1): 142-152.
XIE J Y, ZHANG H F, LUO Y Q, MENG H S, ZHANG J, HONG J P, XU M G. Driving factors of improving fertility and maize yields in the reclaimed soils by seven years of applied organic manure and chemical fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 142-152. (in Chinese)
[8]
邢亚薇, 李春越, 刘津, 王益, 井丽娟, 王苁蓉, 薛英龙, 党廷辉. 长期施肥对黄土旱塬农田土壤微生物丰度的影响. 应用生态学报, 2019, 30(4): 1351-1358.

doi: 10.13287/j.1001-9332.201904.003
XING Y W, LI C Y, LIU J, WANG Y, JING L J, WANG C R, XUE Y L, DANG T H. Effects of long-term fertilization on soil microbial abundance in farmland of the Loess Plateau, China. Chinese Journal of Applied Ecology, 2019, 30(4): 1351-1358. (in Chinese)
[9]
XU Q C, LING N, CHEN H, DUAN Y H, WANG S, SHEN Q R, VANDENKOORNHUYSE P, KENT A D. Long-term chemical-only fertilization induces a diversity decline and deep selection on the soil bacteria. mSystems, 2020, 5: e00337-20.
[10]
胡媛媛, 屈洁, 马琨. 长期施肥对旱作区农田土壤细菌群落组成和多样性的影响. 中国土壤与肥料, 2023(7): 138-148.
HU Y Y, QU J, MA K. Effects of long-term fertilization on soil bacterial community composition and diversity in dry farming region. Soil and Fertilizer Sciences in China, 2023(7): 138-148. (in Chinese)
[11]
HU X J, LIU J J, WEI D, ZHU P, CUI X A, ZHOU B K, CHEN X L, JIN J, LIU X B, WANG G H. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of Northeast China. Pedosphere, 2018, 28(5): 751-763.

doi: 10.1016/S1002-0160(18)60040-2
[12]
练金山, 王慧颖, 徐明岗, 魏文良, 段英华, 刘树堂. 长期施用有机肥潮土细菌的多样性及功能预测. 植物营养与肥料学报, 2021, 27(12): 2073-2082.
LIAN J S, WANG H Y, XU M G, WEI W L, DUAN Y H, LIU S T. Diversity and function prediction of bacteria community in fluvo- aquic soils as affected by long-term organic fertilization. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2073-2082. (in Chinese)
[13]
余腾, 李顺江, 万子维, 阙正扬, 黄国勤, 徐慧芳. 基于长期定位试验的不同施肥处理下旱地红壤微生物的宏基因组学分析. 华中农业大学学报, 2025, 44(1): 148-155.
YU T, LI S J, WAN Z W, QUE Z Y, HUANG G Q, XU H F. Effects of fertilization treatments on microbial community in dryland red soils revealed by experiments of long-term positioning-based meta genomics. Journal of Huazhong Agricultural University, 2025, 44(1): 148-155. (in Chinese)
[14]
TAOVA S. Get data digitizing program code: Description, testing, training. Vienna: International Atomic Energy Agency, International Nuclear Data Committee, 2013.
[15]
ZOMER R J, XU J C, TRABUCCO A. Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data, 2022, 9: 409.
[16]
任凤玲, 张旭博, 孙楠, 徐明岗, 柳开楼. 施用有机肥对中国农田土壤微生物量影响的整合分析. 中国农业科学, 2018, 51(1): 119-128. doi: 10.3864/j.issn.0578-1752.2018.01.011.
REN F L, ZHANG X B, SUN N, XU M G, LIU K L. A meta-analysis of manure application impact on soil microbial biomass across China’s croplands. Scientia Agricultura Sinica, 2018, 51(1): 119-128. doi: 10.3864/j.issn.0578-1752.2018.01.011. (in Chinese)
[17]
ZHOU R R, LIU Y, DUNGAIT J A J, KUMAR A, WANG J S, TIEMANN L K, ZHANG F S, KUZYAKOV Y, TIAN J. Microbial necromass in cropland soils: A global meta-analysis of management effects. Global Change Biology, 2023, 29(7): 1998-2014.

doi: 10.1111/gcb.16613 pmid: 36751727
[18]
WANG L L, LI Q, COULTER J A, XIE J H, LUO Z Z, ZHANG R Z, DENG X P, LI L L. Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis. Agricultural Water Management, 2020, 229: 105934.

doi: 10.1016/j.agwat.2019.105934
[19]
刘丽媛, 徐艳, 朱书豪, 高艺, 郑向群. 有机肥配施对中国农田土壤容重影响的整合分析. 农业资源与环境学报, 2021, 38(5): 867-873.
LIU L Y, XU Y, ZHU S H, GAO Y, ZHENG X Q. Meta-analysis on the responses of soil bulk density to supplementation of organic fertilizers in croplands in China. Journal of Agricultural Resources and Environment, 2021, 38(5): 867-873. (in Chinese)
[20]
AUGUSTO L, BAKKER M R, MEREDIEU C. Wood ash applications to temperate forest ecosystems: Potential benefits and drawbacks. Plant and Soil, 2008, 306(1): 181-198.

doi: 10.1007/s11104-008-9570-z
[21]
KABAŁA C, MUSZTYFAGA E, GAŁKA B, ŁABUŃSKA D, MAŃCZYŃSKA P. Conversion of soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: Conclusions for soil management, environmental monitoring, and international soil databases. Polish Journal of Environmental Studies, 2016, 25(2): 647-653.

doi: 10.15244/pjoes/61549
[22]
HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150.

doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[23]
CURTIS P S, WANG X Z. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113(3): 299-313.

doi: 10.1007/s004420050381
[24]
PALLMANN P. Applied meta-analysis with R. Journal of Applied Statistics, 2015, 42(4): 914-915.

doi: 10.1080/02664763.2014.989464
[25]
LIU C, LU M, CUI J, LI B, FANG C M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology, 2014, 20(5): 1366-1381.

doi: 10.1111/gcb.12517 pmid: 24395454
[26]
ROSENBERG M S, ADAMS D C, GUREVITCH J. Metawin: Statistical Software for Meta-analysis with Resampling Tests. America: Sinauer Associates Inc, 1997.
[27]
BREIMAN L. Random forests. Mach Learn, 2001, 45: 5-32.

doi: 10.1023/A:1010933404324
[28]
LIN Y X, YE G P, KUZYAKOV Y, LIU D Y, FAN J B, DING W X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 2019, 134: 187-196.

doi: 10.1016/j.soilbio.2019.03.030
[29]
YANG Y D, WANG P X, ZENG Z H. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic-inorganic fertilization strategies. Agronomy, 2019, 9(1): 14.

doi: 10.3390/agronomy9010014
[30]
施梦馨, 王豪吉, 土馨雨, 马佳轮, 朱兴果, 白雪, 官会林, 徐武美. 施用有机肥对碱性土壤理化特征与作物生长的影响. 云南师范大学学报(自然科学版), 2022, 42(1): 50-57, 63.
SHI M X, WANG H J, TU X Y, MA J L, ZHU X G, BAI X, GUAN H L, XU W M. Effects of the application of organic fertilizer on the alkaline soil properties and crop growth. Journal of Yunnan Normal University (Natural Sciences Edition), 2022, 42(1): 50-57, 63. (in Chinese)
[31]
王慧颖, 徐明岗, 周宝库, 马想, 段英华. 黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素. 中国农业科学, 2018, 51(5): 914-925. doi: 10.3864/j.issn.0578-1752.2018.05.010.
WANG H Y, XU M G, ZHOU B K, MA X, DUAN Y H. Response and driving factors of bacterial and fungal community to long-term fertilization in black soil. Scientia Agricultura Sinica, 2018, 51(5): 914-925. doi: 10.3864/j.issn.0578-1752.2018.05.010. (in Chinese)
[32]
SUN R B, ZHANG X X, GUO X S, WANG D Z, CHU H Y. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015, 88: 9-18.

doi: 10.1016/j.soilbio.2015.05.007
[33]
陈泓硕, 马大龙, 姜雪薇, 刘梦洋, 臧淑英. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响. 环境科学学报, 2020, 40(4): 1443-1451.
CHEN H S, MA D L, JIANG X W, LIU M Y, ZANG S Y. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong wetland. Acta Scientiae Circumstantiae, 2020, 40(4): 1443-1451. (in Chinese)
[34]
NA X F, YU H L, WANG P, ZHU W W, NIU Y B, HUANG J Y. Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China. Soil Biology and Biochemistry, 2019, 136: 107520.

doi: 10.1016/j.soilbio.2019.107520
[35]
CHINTALA R, MOLLINEDO J, SCHUMACHER T E, MALO D D, JULSON J L. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 2014, 60(3): 393-404.

doi: 10.1080/03650340.2013.789870
[36]
SEMENOV M V, KRASNOV G S, SEMENOV V M, KSENOFONTOVA N, ZINYAKOVA N B, VAN BRUGGEN A H C. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota. Journal of Environmental Management, 2021, 294: 113018.

doi: 10.1016/j.jenvman.2021.113018
[37]
马泽跃, 李伟, 陈波浪, 冯雷, 徐巧, 柴仲平. 氮输入对库尔勒香梨园土壤细菌群落的影响. 经济林研究, 2024, 42(1): 247-265.
MA Z Y, LI W, CHEN B L, FENG L, XU Q, CHAI Z P. Effects of nitrogen input on soil bacterial community in Korla fragrant pear orchard. Non-wood Forest Research, 2024, 42(1): 247-265. (in Chinese)
[38]
杨文叶, 季淑枫, 李丹, 周航, 王京文. 连续施用商品有机肥对耕地质量及蔬菜产量的影响. 农业资源与环境学报, 2014, 31(4): 319-322.
YANG W Y, JI S F, LI D, ZHOU H, WANG J W. Effect of continuous application of commercial organic manure on farmland quality and vegetable yield. Journal of Agricultural Resources and Environment, 2014, 31(4): 319-322. (in Chinese)
[39]
徐明岗, 段英华, 白珊珊, 张文菊, 孙楠. 基于长期定位试验的土壤健康研究与展望. 植物营养与肥料学报, 2024, 30(7): 1253-1261.
XU M G, DUAN Y H, BAI S S, ZHANG W J, SUN N. Research and prospects for soil health based on long-term experiments in arable land of China. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1253-1261. (in Chinese)
[40]
ALI R S, POLL C, KANDELER E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biology and Biochemistry, 2018, 127: 60-70.

doi: 10.1016/j.soilbio.2018.09.010
[41]
马龙, 高伟, 栾好安, 唐继伟, 李明悦, 黄绍文. 基于宏基因组学方法分析施肥模式对设施菜田土壤微生物群落的影响. 植物营养与肥料学报, 2021, 27(3): 403-416.
MA L, GAO W, LUAN H A, TANG J W, LI M Y, HUANG S W. Soil microbial community characteristics in greenhouse vegetable production under different fertilization patterns based on metagenomic analysis. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 403-416. (in Chinese)
[42]
方海瑞, 刘俊杰, 陈雪丽, 姜宇, 刘株秀, 顾海东, 万书明, 肖洋. 长期有机肥和化肥配施对黑土细菌群落特征和大豆产量的影响. 中国生态农业学报(中英文), 2024, 32(5): 804-815.
FANG H R, LIU J J, CHEN X L, JIANG Y, LIU Z X, GU H D, WAN S M, XIAO Y. Effects of long-term combined application of organic and chemical fertilizers on bacterial community characteristics and soybean yields. Chinese Journal of Eco-Agriculture, 2024, 32(5): 804-815. (in Chinese)
[43]
朱金山, 张慧, 马连杰, 廖敦秀, 杨星勇, 王龙昌, 王定勇. 不同沼灌年限稻田土壤微生物群落分析. 环境科学, 2018, 39(5): 2400-2411.
ZHU J S, ZHANG H, MA L J, LIAO D X, YANG X Y, WANG L C, WANG D Y. Diversity of the microbial community in rice paddy soil with biogas slurry irrigation analyzed by illumina sequencing technology. Environmental Science, 2018, 39(5): 2400-2411. (in Chinese)
[44]
孙琪, 王向东, 安海龙, 马艳芝, 张胜珍, 王晓英, 沈玉龙, 客绍英. 不同施肥措施对黄芩根际微生物群落结构的影响. 中国土壤与肥料, 2024(4): 45-52.
SUN Q, WANG X D, AN H L, MA Y Z, ZHANG S Z, WANG X Y, SHEN Y L, KE S Y. Effect of different fertilizations on the microbial community structure in rhizosphere soil of Scutellaria baicalensis Georgi. Soil and Fertilizer Sciences in China, 2024(4): 45-52. (in Chinese)
[45]
AI C, ZHANG S Q, ZHANG X, GUO D D, ZHOU W, HUANG S M. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma, 2018, 319: 156-166.

doi: 10.1016/j.geoderma.2018.01.010
[46]
黄媛, 朱艳霞, 韦范, 林杨, 汤丹峰. 不同施肥量对仙草产量和土壤微生物多样性的影响. 中国农学通报, 2024, 40(20): 65-72.

doi: 10.11924/j.issn.1000-6850.casb2023-0603
HUANG Y, ZHU Y X, WEI F, LIN Y, TANG D F. Effects of different fertilization rates on yield of Mesona chinensis Benth and soil bacterial diversity. Chinese Agricultural Science Bulletin, 2024, 40(20): 65-72. (in Chinese)
[47]
王钊, 张冰, 董思奇, 胡雨翕, 齐书宇, 冯国忠, 高强, 周雪. 长期施用氮肥对黑土和风沙土根际微生物群落结构及功能的影响. 中国农业科学, 2025, 58(3): 520-537. doi: 10.3864/j.issn.0578-1752.2025.03.009.
WANG Z, ZHANG B, DONG S Q, HU Y X, QI S Y, FENG G Z, GAO Q, ZHOU X. Effects of long-term nitrogen fertilizer application on the rhizosphere microbial community structure and function in black soil and sandy soil. Scientia Agricultura Sinica, 2025, 58(3): 520-537. doi: 10.3864/j.issn.0578-1752.2025.03.009. (in Chinese)
[48]
李婷, 葛安辉, 孙志梅, 刘四义, 张丽梅, 韩雪梅. 山药不同施肥管理下土壤碳氮养分和微生物群落分异特征. 农业环境科学学报, 2025, 44(1): 73-84.
LI T, GE A H, SUN Z M, LIU S Y, ZHANG L M, HAN X M. Differential characteristics of soil carbon and nitrogen nutrients and microbial community in yam fields under different fertilization practices. Journal of Agro-Environment Science, 2025, 44(1): 73-84. (in Chinese)
[49]
张晓花, 温昌焘, 王克勤, 宋娅丽, 杨昕, 陈炳绅. 施肥措施对滇中植烟土壤细菌群落结构和功能的影响. 烟草科技, 2024, 57(7): 65-74.
ZHANG X H, WEN C T, WANG K Q, SONG Y L, YANG X, CHEN B S. Effects of different fertilization treatments on bacterial community structure and functions of tobacco planting soil in central Yunnan. Tobacco Science & Technology, 2024, 57(7): 65-74. (in Chinese)
[50]
VANEGAS J, LANDAZABAL G, MELGAREJO L M, BELTRAN M, URIBE-VÉLEZ D. Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah. European Journal of Soil Biology, 2013, 55: 1-8.

doi: 10.1016/j.ejsobi.2012.10.008
[51]
陈末, 朱新萍, 蒋靖佰伦, 买迪努尔·阿不来孜, 孙涛, 贾宏涛. 冻融期巴音布鲁克高寒湿地土壤细菌群落变化及其响应机制. 农业环境科学学报, 2020, 39(1): 134-142.
CHEN M, ZHU X P, JIANG J B L, MAIDINUER·ABULAIZI, SUN T, JIA H T. Shifts in soil bacterial community and their response mechanism during freeze-thaw period in Bayinbuluk alpine wetland. Journal of Agro-Environment Science, 2020, 39(1): 134-142. (in Chinese)
[52]
YUAN M M, GUO X, WU L W, ZHANG Y, XIAO N J, NING D L, SHI Z, ZHOU X S, WU L Y, YANG Y F, TIEDJE J M, ZHOU J Z. Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021, 11(4): 343-348.

doi: 10.1038/s41558-021-00989-9
[53]
GUO X, FENG J J, SHI Z, ZHOU X S, YUAN M T, TAO X Y, HALE L, YUAN T, WANG J J, QIN Y J, et al. Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 2018, 8(9): 813-818.

doi: 10.1038/s41558-018-0254-2
[54]
刘佳, 陈晓芬, 刘明, 吴萌, 王伯仁, 蔡泽江, 张桃林, 李忠佩. 长期施肥对旱地红壤细菌群落的影响. 土壤学报, 2020, 57(2): 468-478.
LIU J, CHEN X F, LIU M, WU M, WANG B R, CAI Z J, ZHANG T L, LI Z P. Effects of long-term fertilization on bacterial community in upland red soil. Acta Pedologica Sinica, 2020, 57(2): 468-478. (in Chinese)
[55]
WALDROP M P, ZAK D R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems, 2006, 9(6): 921-933.

doi: 10.1007/s10021-004-0149-0
[1] LI WeiJing, WANG HongYuan, XU Yang, LI Hao, ZHAI LiMei, LIU HongBin. Microbial Community Structure Characteristics at the Water-Soil Interface in Rice-Crab Co-Culture System [J]. Scientia Agricultura Sinica, 2024, 57(18): 3551-3567.
[2] XU JuZhen, ZHANG MengLu, HE WenQing, SUI Peng, CHEN YuanQuan, CUI JiXiao. Yield-Increasing Effects Under Plastic Film Mulching of Potato in China Based on Meta-Analysis [J]. Scientia Agricultura Sinica, 2023, 56(15): 2895-2906.
[3] LIAO Ping, MENG Yi, WENG WenAn, HUANG Shan, ZENG YongJun, ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[4] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[5] MENG Yi,WENG WenAn,CHEN Le,HU Qun,XING ZhiPeng,WEI HaiYan,GAO Hui,HUANG Shan,LIAO Ping,ZHANG HongCheng. Effects of Water-Saving Irrigation on Grain Yield and Quality: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(11): 2121-2134.
[6] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[7] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[8] DENG LiJuan,JIAO XiaoQiang. A Meta-Analysis of Effects of Nitrogen Management on Winter Wheat Yield and Quality [J]. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365.
[9] XinRun YANG,Bei XU,ZhiFeng HE,Jing WU,RuiHua ZHUANG,Chao MA,RuShan CHAI,Kianpoor Kalkhajeh Yusef,XinXin YE,Lin ZHU. Impacts of Decomposing Microorganism Inoculum on Straw Decomposition and Crop Yield in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(7): 1359-1367.
[10] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
[11] MA DengKe,YIN LiNa,LIU YiJian,YANG WenJia,DENG XiPing,WANG ShiWen. A Meta-Analysis of the Effects of Nitrogen Application Rates on Yield and Water Use Efficiency of Winter Wheat in Dryland of Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(3): 486-499.
[12] XIA ShuFeng,WANG Fan,WANG LongJun,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,DAI TingBo,JIANG Dong. Study on the Adaptability of Wheat Reaching the Protein Content Standard of Soft Wheat in Jiangsu Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 4992-5004.
[13] YANG JunHao,LUO YongLi,CHEN Jin,JIN Min,WANG ZhenLin,LI Yong. Effects of Main Food Yield Under Straw Return in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429.
[14] SHANG LiRong,WAN LiQiang,LI XiangLin. Effects of Organic Fertilizer on Soil Bacterial Community Diversity in Leymus chinensis Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624.
[15] Shuang XING,JingHai FENG. Effects of Lactobacillus Supplements on Growth Performance of Broilers: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(1): 183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!